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After decades of effort, the field of depression research is

far from understanding how antidepressant drugs

mediate their clinical effects. The time lag of 2–6 weeks

of therapy that is necessary to obtain antidepressant

efficacy indicates a requirement for long-term regulation

of molecules activated by drug treatment. The focus of

antidepressant research has thus expanded from exam-

ining acute monoamine-mediated mechanisms to

include long-term transcriptional regulators such as

cAMP response element-binding protein (CREB) and

trophic factors such as brain-derived nerve growth

factor and insulin-like growth factor. In addition, the

recent discovery of antidepressant-induced neurogen-

esis provides another avenue by which antidepressants

might exert their effects. Current efforts are aimed at

understanding how CREB and trophic factor signaling

pathways are coupled to neurogenic effects and how

alterations in behavioral, molecular and cellular end-

points are related to the alleviation of the symptoms of

depression.
What is the mechanism of action of antidepressant

drugs?

Depression is a clinically and biologically heterogeneous
disease. It is one of the most prevalent and costly
psychiatric disorders worldwide, with 10–30% of women
and 7–15% of men likely to suffer from depression in their
life-time [1]. Despite the prevalence and societal cost of
depression of an estimated US$50 billion [2], currently
used antidepressants do not improve symptoms in all
patients. This is, at least in part, the consequence of our
limited understanding of the mechanisms of antidepress-
ant action and the pathophysiology of depression. Treat-
ment for depression requires administration of
antidepressant drugs for 2–6 weeks before clinical efficacy
is observed. This time lag suggests that long-term
adaptations in neurotransmitter systems and/or their
downstream targets might be necessary for therapeutic
effects. However, a novel hypothesis is emerging that is
changing the way we think about both the pathology of
depression and the mechanisms that underlie anti-
depressant drug action. This hypothesis postulates that
antidepressants activate not only second messenger
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systems leading to the activation of transcription factors
such as cAMP response element-binding protein (CREB)
but also activate neurotrophic pathways and increase
hippocampal neurogenesis.

Multiple classes of antidepressant drugs, including
monoamine oxidase inhibitors (MAOIs), selective seroto-
nin reuptake inhibitors (SSRIs) and selective noradrena-
line reuptake inhibitors (SNRIs), increase both cell
proliferation and neurogenesis in the dentate gyrus of
the adult hippocampus [3,4]. These cellular effects occur
only after chronic, and not acute, dosing, which corre-
sponds with the therapeutic time-course for clinical
efficacy of antidepressants. The challenge of pharmaco-
logical studies and animal models is to elucidate the
mechanism of antidepressant action beyond neurotrans-
mitters to identify specific intracellular second messenger
pathways, determine how they impact on neurogenesis
and evaluate the behavioral consequences of these cellular
modifications.
Antidepressant drugs: beyond neurotransmitters

to activation of second messenger pathways

and transcriptional regulators

The monoamine hypothesis of depression postulates that a
functional deficiency of 5-hydroxytryptamine [5-HT (ser-
otonin)] or noradrenaline in the brain is key to the
pathology and/or behavioral manifestations associated
with depression [5,6]. In support of this theory, the
majority of antidepressant drugs used clinically produce
acute increases in the levels of 5-HT and noradrenaline.
This in turn causes the activation of seven-trans-
membrane domain receptors that are coupled to hetero-
trimeric G proteins. Through G-protein activation of
adenylyl cyclase, cAMP production is increased, enabling
the activation of cAMP-dependent protein kinase (PKA)
and phosphorylation of target proteins. Regulation of G
proteins, at the level of enhanced coupling of Gs to
adenylyl cyclase and increased adenylyl cyclase activity,
occurs following antidepressant treatment [7,8]. In
addition, PKA activity is increased following chronic
treatment of rats with either a tricyclic antidepressant
(imipramine), an MAOI (tranylcypromine) or electrocon-
vulsive shock (ECS) [9].

Additional evidence implicating the cAMP–PKA cas-
cade in the mechanism of action of antidepressants comes
from studies employing rolipram, a compound
that inhibits the high-affinity cAMP-selective
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phosphodiesterase type 4 (PDE4). Rolipram activates the
cAMP–PKA cascade [10] and chronic but not acute
treatment with rolipram produces antidepressant effects
in multiple behavioral tests in rats and mice [11,12]. In
addition, certain isoforms of PDE4 (PDE4A and 4B) are
upregulated after chronic antidepressant treatment [13],
again suggesting that increased intracellular levels of
cAMP are one of the consequences of antidepressant
treatment, and that long-term regulation of this pathway
is necessary to observe clinical efficacy.

Although most antidepressant drugs increase intra-
cellular levels of cAMP through activation of adrenocep-
tors or 5-HT receptors, it is important to note that not all
subtypes of these receptors are coupled to the adenylyl
cyclase–cAMP–PKA pathway. For example, activation of
phospholipase C (PLC) by a1-adrenoceptors can lead to
mobilization of internal Ca2C stores and subsequent
activation of Ca2C–calmodulin (CaM)-dependent kinases.
Indeed, several antidepressants, including fluoxetine,
desipramine and reboxetine, markedly increase the
enzymatic activity of Ca2C–CaM kinase II and IV in the
prefrontal cortex of rats [14,15].

Activation of protein kinases in the cell thus enables
phosphorylation of downstream effectors. One of the best-
characterized targets for phosphorylation by a variety of
kinases is the transcription factor CREB [16] (Figure 1).
PKA and CaM kinase catalyze the transfer of phosphate
from ATP to specific serine residues on this protein
substrate. Activation of PKA leads to phosphorylation of
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Figure 1. Regulation of cAMP response element-binding protein (CREB) phos-

phorylation by antidepressant drugs. Most clinically effective antidepressants alter

noradrenaline or 5-HT neurotransmitter levels by a variety of mechanisms. Cell-

surface receptors can respond to these neurotransmitters by altering intracellular

second messengers, such as cAMP and Ca2C, in addition to several kinases, such as

cAMP-dependent protein kinase (PKA), Ca2C–CaM-dependent kinases (CaMK),

mitogen-activated protein kinase kinase (MEK), extracellular signal-regulated

protein kinase (ERK) and several forms of ribosomal S6 kinase (RSK1–3). Kinases

phosphorylate protein substrates such as the transcription factor CREB. CREB binds

to a cAMP responsive element (CRE) in DNA to regulate gene expression. These

CREB-target genes might ultimately modulate behavior, endocrine or cellular

changes associated with chronic antidepressant drug treatment.
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a serine residue (S133) in the CREB protein that enables
recruitment of co-activator proteins to initiate gene
transcription [17]. CREB is also a substrate for Ca2C–
CaM kinase II and IV, which activate or inhibit CREB
transactivation depending on the serine residues that are
phosphorylated [18,19]. In addition, mitogen, signaling
through the Ras–mitogen-activated protein (MAP) kinase
kinase (MEK)–extracellular signal-regulated protein
kinase (ERK) pathway, can phosphorylate CREB via
RSK2, a member of the ribosomal S6 kinase family [20],
and at least one study has reported changes in downstream
components of the MEK–ERK–RSK2-mediated signaling
cascade following chronic antidepressant treatment [15].

The ability of antidepressants to activate protein
kinases in the cell and the potential for these kinases to
phosphorylate CREB suggest that antidepressants can
activate CREB as part of their mechanism of action.
Indeed, chronic administration of fluoxetine to rats
increases phosphorylated CREB (P-CREB) levels in
several brain regions, including the amygdala, cortex,
dentate gyrus and hypothalamus [21]. Interestingly,
desipramine increases the levels of P-CREB only in the
dentate gyrus [21]. In a separate study, chronic treatment
with the SSRI fluoxetine increased P-CREB levels in the
prefrontal and frontal cortex to a greater extent than the
selective noradrenaline reuptake inhibitors desipramine
and reboxetine [15]. Moreover, activation of the Ca2C–
CaM kinase IV and MAP kinase cascades contributed
more to this increase in P-CREB levels than did activation
of the cAMP–PKA pathway. The selectivity of antidepress-
ant drugs at reuptake sites throughout the brain does not
vary, however, depending on which postsynaptic receptors
and associated signal transduction pathways are acti-
vated in various brain regions, the subsequent effects on
CREB activity will be different.

Genetic models of CREB activity

Because antidepressant drugs can activate CREB, recent
studies have examined whether manipulation of CREB
activity and/or levels of CREB can recapitulate some
effects of antidepressants. To date, the function of CREB
has been investigated using animal models or viral-vector-
mediated gene overexpression (Table 1). Given that the
majority of studies have reported increased CREB and/or
CREB phosphorylation after chronic antidepressant
treatment, the hypothesis of many of these studies was
that alterations in CREB would have effects on baseline
measures in antidepressant tests. Unfortunately, to date,
a clear picture has not emerged as a result of these in vivo
studies because the outcomes vary depending on the
spatial and temporal expression of CREB. For example,
acute overexpression of CREB in the dentate gyrus in rats
induced antidepressant-like responses in the learned
helplessness paradigm and in the forced swim test (FST)
[22]. Learned helplessness provides a model for the
psychological aspect of depression because prior exposure
to an inescapable shock in animals interferes with their
ability to learn in a new situation where escape is possible,
whereas the FST is a standard paradigm used to evaluate
antidepressant drug efficacy. Overexpression of CREB in
the basolateral amygdala using a similar viral gene
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Table 1. Animal models for behavioral analysis of CREB function

Approacha Effect Brain region Phenotype Refs

Viral expression HSV-CREBa Gain of function Hippocampus, dentate gyrus Antidepressant [22]

Viral expression HSV-CREBa Gain of function Basolateral amygdala Antidepressant,

pro-depressantb

[23]

Viral expression HSV-CREBa Gain of function Nucleus accumbens Pro-depressant [24]

Viral expression HSV-mCREB Loss of function Nucleus accumbens Antidepressant [24,25]

Transgenic NSE-tTA/TetOp CREBa Gain of function Forebrainb Pro-depressant [25]

Transgenic NSE-tTA/TetOp mCREB Loss of function Forebrainc Antidepressant [25]

Gene ablation Loss of function Global Antidepressant [28]
aAbbreviations: HSV, herpes simplex virus; mCREB, a dominant mutant form of CREB; NSE, neuron-specific enolase; tTA, tetracycline transactivator; TetOp, tetracycline

operon.
bTemporal expression of CREB determines the behavioral phenotype; expression of CREB before training is associated with a pro-depressant phenotype, whereas expression

after training is associated with an antidepressant phenotype.
cExpression included parts of the striatum (including dorsal striatum and the nucleus accumbens) and certain aspects of cerebral cortex and subfields of the hippocampus.
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transfer approach produced an antidepressant-like effect
when expression was increased after training in the
learned helplessness model of depression [23]. However,
when CREB expression was elevated in the nucleus
accumbens, a pro-depressive response was observed [24].
Similarly, overexpression of CREB in the basolateral
amygdala produced a pro-depressant effect but only
when expression was induced before training in learned
helplessness [23]. Lastly, overexpression of CREB in a
transgenic mouse line resulted in depressive-like beha-
viors. However, because CREB overexpression was not
localized to specific brain structures in these mice, it is
difficult to identify the neuroanatomical substrate of this
effect [25]. Together, these data highlight the regional and
temporal importance of CREB activation in mediating
behavioral responses associated with antidepressant drug
treatment.

Several studies have demonstrated that viral expression
of a dominant mutant form of CREB, mCREB, produces an
antidepressant-like effect when infused into the nucleus
accumbens of mice [24], and transgenic expression of
mCREB in mice also produces an antidepressant-like effect
[25]. These results are similar to those obtained in a CREB-
deficient mouse model. This CREB-deficient mouse was
generated by targeted deletion of two major isoforms of the
gene encoding CREB by homologous recombination that
resulted in a global reduction of CREB by w90%, compared
with wild-type mice [26,27]. These mice demonstrate an
antidepressant-like phenotype in three different behavior
tests: the FST, tail suspension test (TST) and learned
helplessness [28]. Inaddition, theantidepressant efficacy of
desipramine and fluoxetine is maintained in CREB-
deficient mice at the behavioral and endocrine level [28]
despite the significant reduction of CREB protein levels
throughout the brains of these animals. These data suggest
that CREB might not be required for acute antidepressant
efficacy as it is assessed in current behavioral paradigms.
Few behavioral tests exist to evaluate chronic antidepress-
ant efficacy and the role of CREB in mediating long-term
effects of antidepressant drugs has not yet been discerned.
Antidepressant drugs, neurotrophins and growth

factors

Brain-derived nerve growth factor

Plasticity in the nervous system is subserved by a variety
of neurotrophins and growth factors. One well-
www.sciencedirect.com
characterized neurotrophic factor involved in activity-
dependent neuronal plasticity, survival and differen-
tiation of peripheral and central neurons is brain-derived
nerve growth factor (BDNF) [29–31]. Several studies
suggest that BDNF is a target of antidepressant action.
Robust increases in the levels of BDNF mRNA in cortical
and hippocampal regions have been reported following
chronic antidepressant drug administration in rats
[32,33]; however, other studies indicate that this is not
common to all antidepressant drugs. For example,
although tranylcypromine (a MAOI) and ECS increase
BDNF mRNA levels [34–36], the more-selective anti-
depressants such as desipramine and fluoxetine have
variable effects [32,34,35,37]. Alterations in BDNF protein
levels have been reported only in a few studies [36,38]
with tranylcypromine and ECS increasing protein levels
but fluoxetine and desipramine having no effect [38].
BDNF has also been shown to be regulated by exposure to
stress [39], and antidepressant treatment can block this
downregulation [32,40]. Furthermore, the duration of
drug treatment and interval following drug adminis-
tration can have an impact on the overall levels of
BDNF [34]. Thus, differences in stress states of animals
in various studies, in addition to the duration of treatment
and when BDNF levels are analyzed following treatment,
might contribute to these conflicting reports.

BDNF binds to the trkB receptor in the brain. Upon
activation by ligand-dependent autophosphorylation, this
tyrosine kinase initiates a variety of intracellular signal-
ing cascades including the MEK–ERK pathway and
downstream activation of RSK2, which can phosphorylate
CREB. In addition, the promoter region of exon 3 in the
gene encoding BDNF contains CRE elements, identifying
it as a potential CREB-target gene [41]. This information,
combined with the temporal and spatial correlation of
upregulation of BDNF and CREB activation following
antidepressant treatment, suggest that enhanced CREB
expression might lead to an upregulation of BDNF;
however, no studies to date have determined whether
this is a direct mechanism. A link between CREB and
BDNF is strongly suggested by the finding that anti-
depressant-mediated upregulation of BDNF is blocked in
CREB-deficient mice [28]. Thus, although CREB does not
appear to mediate acute behavioral or endocrine effects of
antidepressant drugs, endpoints that rely on chronic drug
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administration, such as changes in gene expression, are
reduced when CREB function is impaired.

BNDF is not only a putative target of antidepressant
action but BDNF itself produces antidepressant-like
effects and might thus be one of the molecular mediators
of antidepressant drugs. For example, central adminis-
tration of BDNF into the ventricles, hippocampus or
midbrain of rats [42] has antidepressant-like effects on
multiple models of depression [42,43]. One recent study
has reported that after BDNF infusion into the ventral
tegmental area and nucleus accumbens, depressive-like
behaviors are observed [44]. However, the majority of
studies indicates that BDNF infusion and, analogously,
trkB activation produces a positive effect in the brain. In
addition to its direct antidepressant effects, BDNF
infusion also induces neurogenesis [45], which can directly
or indirectly contribute to its antidepressant action in the
long term. Further investigation is necessary to determine
if a causal relationship exists between increased CREB
activation and BDNF expression on the one hand, and
hippocampal neurogenesis and antidepressant behavioral
effects on the other hand.

Genetic models of BDNF action

Mice that lack BDNF display severe neuronal deficits and
early postnatal death [31]. However, studies examining
mice that lack only one allele of the gene encoding BDNF
(BDNFC/K) have identified alterations in learning [46]
and synaptic plasticity [47,48]. Some lines of BDNFC/K

mice display a reduction in BDNF protein levels but
without any accompanying changes in baseline behavior
in models such as the FST [49]. Other lines of BDNFC/K

mice display altered synaptic responses, but a specific
behavioral phenotype associated with these alterations
has not been identified [48]. These data reveal that a
partial loss of BDNF is not sufficient to affect baseline
behavior but this interpretation is compromised by the
fact that these animals had a loss of BDNF from birth and
might have evolved compensatory responses as adults.
However, both trkBC/K and BDNFC/K mice have been
reported to be resistant to antidepressants in the FST [50].

The use of an inducible knockout system was employed
recently to delete BDNF specifically in the forebrain.
Although these mutant mice did not demonstrate a
depressive-like phenotype that might have been predicted
with the loss of BDNF, they did exhibit an attenuated
response to antidepressant administration in the FST
[51]. By extension, mice that lack the BDNF receptor trkB
in a forebrain-specific deletion demonstrate antidepress-
ant behaviors in the FST; however, specific responses to
antidepressant drugs were not tested in these mice [52].
Taken together, these studies indicate that BDNF is
intricately involved in depression and antidepressant
action, even though its mechanisms of action are far
from clear.

Insulin like growth factor

Recent studies in rats have identified another neuro-
trophic factor, insulin-like growth factor (IGF-1), in
antidepressant action and neurogenesis. Both systemic
and central administration of IGF-1 increase cell
www.sciencedirect.com
proliferation in the adult hippocampus, and IGF-1 has
been shown to selectively increase maturation of neurons
[53,54]. Central administration of IGF-1 produces anti-
depressant-like effects in the forced swim tests in rats,
which indicates that IGF-1 and IGF-1-induced signal
transduction pathways might be another mechanism by
which antidepressants exert their behavioral effects [55].
IGF-1 stimulates the phosphoinositide 3-kinase–PKB
pathway, and has been shown to phosphorylate CREB in
addition to the pro-apoptotic effector proteins glycogen
synthase kinase 3b (GSK-3b) and the winged helix
transcription factor Foxo1 [56].

The downstream signaling pathways of IGF-1, BDNF
and even 5-HT demonstrate a high degree of overlap [57].
The functional effect of these pathways might be a
combination of increasing cell proliferation and neuro-
genic pathways, all with the net effect of increasing
synaptic strength and synaptic plasticity. Currently,
there is little information available with respect to the
behavioral effects of antidepressants in IGF-1 genetic
models because IGF-1 mutant mice have a limited
lifespan [58] and no conditional deletions of the gene
encoding IGF-1 are available.

Antidepressant-induced neurogenesis

Reduced hippocampal cell volume has been observed in
depressed humans in both magnetic resonance imaging
(MRI) and post-mortem studies, compared with normal
individuals [59,60]. Furthermore, antidepressant treat-
ment has been shown to reverse or prevent this decrease
in hippocampal volume [61]. Multiple classes of anti-
depressant drugs increase both cell proliferation and
neurogenesis in the dentate gyrus of the adult hippo-
campus (Table 2), and this requires a chronic, and not an
acute, time-course of administration. These findings have
led to the hypothesis that antidepressant drugs might
exert some of their therapeutic benefits by increasing
hippocampal neurogenesis [62]. However, a major draw-
back in the majority of these studies is that a causal link
between the administration of antidepressants, cell
proliferation or neurogenesis and antidepressant efficacy
has not been demonstrated.

A relationship between CREB and antidepressant-
induced neurogenesis is supported by the finding that
the majority of antidepressants that increase neurogen-
esis also activate a cAMP-related second messenger
pathway and increase CREB phosphorylation. Further-
more, specific activation of the cAMP pathway has been
shown to be neurogenic. The PDE4 inhibitor rolipram has
recently been shown to activate CREB and increase
hippocampal cell proliferation and neurogenesis in a
chronic but not an acute time-course [63]. Rolipram also
increases cell survival of newly formed cells and increases
the number of branch points and length of dendrites in
newly formed cells [63].

The role of P-CREB in neurogenesis is currently being
studied by many laboratories. Newly formed hippocampal
cells labeled with 5-bromo-2 0deoxyuridine (BrdU) start to
express P-CREB one to two weeks after their formation,
with reduced expression of P-CREB at 4 weeks [64,65].
Although the function of CREB at these time points is
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Table 2. Signaling pathways and antidepressant efficacy of compounds that increase hippocampal cell proliferation or

neurogenesisa

Compound or treatmentb Signaling pathway or

neurotransmitter

system

Effect on prolifer-

ation or neurogen-

esis

Efficacy in animal

models of

depression

Clinical

efficacy

Refs

Fluoxetine (SSRI) 5-HT Increases, also

increases cell

survival

Yes Yes [3]

Tranylcypromine (MAOI) 5-HT Increases Yes Yes [3]

Imipramine(tricyclic) 5-HT and NA Increases Yes Yes [68]

Desipramine (tricyclic) 5-HT and NA Increases Yes Yes [3]

Reboxetine (SNRI) NA Increases Yes Yes [3]

Venlafaxine(SNRI) NA Increases Yes Yes [72]

Rolipram (PDE4 inhibitor) CAMP–CREB Increases, also

increases cell

survival

Yes Unknown [63]

Tianeptine 5-HT Increases Yes Unknown [4]

Tachykinin NK1 receptor

antagonist

NK1 receptor Increases Yes Unknown [73]

Vasopressin V3 receptor Vasopressin Increases Yes Unknown [74]

ECT cAMP–CREB (and

others)

Increases Yes Yes [3]

IGF-1 Ras–MAPK Increases, also

increases differen-

tiation into neurons

Yes Unknown [55,75]

BNDF cAMP–CREB Increases Yes Unknown [45]

Lithium ERK Increases No No [76]

Valproate ERK Increases No No [76]

5-HT1A receptor agonist: 8-OH-

DPAT

Gi/o–PKA, ERK Increases Yes Unknown [62,70]

5-HT1A receptor antagonist:

WAY100635c

Gi/o–PKA, ERK Decreases or no

change

No Unknown [77]

5-HT1B receptor agonist:

sumatriptan (GR43175)

Gi/o–PKA, ERK No change but

reverses PCPA-

induced decrease

No Unknown [78]

5-HT1B receptor antagonist:

GR127935c

Gi/o–PKA, ERK No change No No [78]

5-HT2A/C receptor agonist: DOI Gq–PKC Increase No No [78]

5-HT2A/C receptor antagonist:

ketanserin

Gq–PKC Decreases No No [78]

5-HT2C receptor agonist:

RO600175c

Gq–PKC Small change Yes Unknown [78]

aAbbreviations: BDNF, brain-derived nerve growth factor; CREB, cAMP response element-binding protein; DOI, 1-(2,5-dimethoxy-4 iodophenyl) 2-aminopropane HCl; ECT,

electroconvulsive therapy; ERK, extracellular signal-regulated kinase; IGF-1, insulin growth factor; MAOI, monoamine oxidase inhibitor; MAPK, mitogen-activated protein

kinase; NA, noradrenaline; 8-OH-DPAT, (C/K)-8-hydroxy-2-(di-n-propylamino)tetralin; PCPA, para-chlorophenylalanine; PDE, phosphodiesterase; PKA, protein kinase A;

SNRI, selective noradrenaline reuptake inhibitor; SSRI, selective serotonin reuptake inhibitor.
bThe type of antidepressant is given in parentheses.
cSee Chemical names.

Chemical names

GR127935: 2 0-methyl-4 0-(5-methyl-[1,2,4]oxadiazol-3-yl)-biphe-

nyl-4-carboxylic acid

RO600175: 6-chloro-5-methyl-N-[6-(2-methylpyridin-3-yloxy)pyr-

idin-3-yloxy]indoline-1-carboxamide

WAY100635: N-{2-[4-(2-methoxy-phenyl)-1-piperazinyl]ethyl}-N-

(2-pyrindyl)cyclohexanecarboxamide trihydrochloride
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currently unknown, it might be that it is acting in a pro-
survival program. In support of this notion, Hastings and
colleagues have shown that the number of newly formed
cells marked with BrdU is greatly reduced between 2 and
4 weeks (compared with initial levels). The reduced
expression of P-CREB in these newly formed cells at
these same time-points might be a mechanism by which
cells prevent apoptotic mechanisms and ensure their
survival into mature neurons [66].

The associations between BDNF, neurogenesis and
behavior have not as yet yielded a predictive effect.
Baseline neurogenesis is reduced in BDNFC/K mice, and
this is associated with a significant reduction in the
volume of the dentate gyrus [67]. However, baseline
changes in behavior have not been observed in these
mice, suggesting a dissociation between behavioral and
cellular endpoints of antidepressant effects in this
particular genetic model. Recently, the effect of chronic
antidepressant treatment was examined in BDNFC/K
www.sciencedirect.com
mice. Although chronic imipramine treatment increased
cell proliferation immediately in both wild-type and
BDNFC/K mice, three weeks later the amount of newly
formed cells was significantly reduced in BDNFC/K mice,
compared with wild-type mice [68]. These data indicate
that BDNF is required for the long-term survival of newly
formed neurons in the hippocampus. Future studies
employing conditional knockout mice might reveal more
about the interaction of CREB, BDNF and neurogenesis
on behavior. In addition, the development of behavioral
paradigms that respond to chronic antidepressant drug
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treatment might be more sensitive to alterations in these
long-term gene manipulations.

Although the majority of antidepressants activate the
cAMP pathway and are neurogenic, there are some
important exceptions. The atypical antidepressant tia-
neptine has not been shown to signal through cAMP,
although it produces antidepressant-like behavioral
effects and increases hippocampal cell proliferation and
neurogenesis in multiple species [4]. Importantly, tianep-
tine not only increases cell proliferation in normal animals
but also prevents stress-induced decreases in proliferation
and neurogenesis.

In addition, there are compounds that activate similar
second messenger pathways but are not clinically effective
antidepressants. Lithium and valproate, for example,
activate many of the same pathways as clinically effective
antidepressants via inhibition of GSK3-b and activation of
the MEK–ERK pathway. Lithium can also reverse the
deleterious effects of stress on hippocampal plasticity [69].
Although CREB and ERK activation might be responsible
for some of these effects, it does not follow that
administration of a drug that activates ERK is an
antidepressant. The differences between lithium, tianep-
tine and other antidepressants still need to be elucidated.

The final proof of concept for the role of neurogenesis in
depression and antidepressant action would be to
determine the effect of ablation of specific cells and/or
cell types on behavior. A recent study in mice showed that
X-ray irradiation, which inhibits cell proliferation, also
prevented the behavioral effects of chronic administration
of antidepressants [70]. The authors’ conclusion was that
the lack of cell proliferation was responsible for the loss of
behavioral effects. However, it is also possible that
irradiation affected multiple signal transduction mechan-
isms in addition to the direct effect on proliferating cells. It
has been reported that low-dose irradiation produced not
only perturbations in neurogenesis but ERK1,2, protein
kinase B and CREB activation in the hippocampus and
frontal cortex of mice, with repetitive exposure having a
much more pronounced effect then acute exposure [71]. It
is possible that the effect of the irradiation on the trophic
and signal transduction pathways or factors might have
contributed to the inability of antidepressants to produce
the expected behavioral effect in the irradiated adult mice.

Conclusions and future directions

Although the field of antidepressant pharmacology has
progressed rapidly during the past 10 years, there are
many unanswered questions about the function and
mechanism by which antidepressants exert their thera-
peutic effects. Recent research has moved beyond neuro-
transmitters to understanding the role of second
messengers and their targets such as phosphorylated
CREB and BDNF. Advanced genetic techniques have
enabled the development of various rodent models, which
permit evaluation of antidepressant effects at behavioral,
molecular and cellular levels. Antidepressants might alter
some or all of these effects through distinct pathways,
many of which are related to CREB, BDNF and
neurogenesis. In addition, antidepressant-induced neuro-
genesis might be one step in a larger pathway of signal
www.sciencedirect.com
transduction signaling that might contribute to the
therapeutic effects of antidepressants.
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