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heel Running Alters Serotonin (5-HT) Transporter,
-HT1A, 5-HT1B, and Alpha1b-Adrenergic Receptor
RNA in the Rat Raphe Nuclei

enjamin N. Greenwood, Teresa E. Foley, Heidi E.W. Day, Daniel Burhans, Leah Brooks, Serge Campeau,
nd Monika Fleshner

ackground: Altered serotonergic (5-HT) neurotransmission is implicated in the antidepressant and anxiolytic properties of physical
ctivity. In the current study, we investigated whether physical activity alters factors involved in the regulation of central 5-HT neural
ctivity.
ethods: In situ hybridization was used to quantify levels of 5-HT transporter (5-HTT), 5-HT1A, 5-HT1B, and �1b-adrenergic receptor

�1b ADR) messenger ribonucleic acids (mRNAs) in the dorsal (DRN) and median raphe (MR) nuclei of male Fischer rats after either
edentary housing or 3 days, 3 weeks, or 6 weeks of wheel running.
esults: Wheel running produced a rapid and lasting reduction of 5-HT1B mRNA in the ventral DRN. Three weeks of wheel running
ecreased 5-HTT mRNA in the DRN and MR and increased �1b ADR mRNA in the DRN. After 6 weeks of wheel running, 5-HTT mRNA
emained reduced, but �1b ADR mRNA returned to sedentary levels. Serotonin1A mRNA was increased in the MR and certain DRN
ubregions after 6 weeks only.
onclusions: Data suggest that the central 5-HT system is sensitive to wheel running in a time-dependent manner. The observed
hanges in mRNA regulation in a subset of raphe nuclei might contribute to the stress resistance produced by wheel running and the

ntidepressant and anxiolytic effects of physical activity.
ey Words: Exercise, depression, anxiety, learned helplessness, se-
otonin, 5-HT autoreceptors

he ability of physical exercise to reduce the incidence and
severity of human depression and anxiety is well accepted
and has been extensively reviewed (Brosse et al 2002;

unn et al 2001; Dunn and Dishman 1991; Fox 1999; Lawlor and
opker 2001; Martinsen 1990a, 1990b; Martinsen and Morgan,
997; Morgan 1985; Mutrie 2000; Paluska and Schwenk 2000;
almon 2001; Scully et al 1998; Suh et al 2002). Results of rodent
tudies similarly indicate that voluntary wheel running provides
ntidepressant and anxiolytic effects in several animal models of
epression and anxiety, including the forced-swim test (Solberg
t al 1999), chronic mild stress (Solberg et al 1999), and behav-
oral depression/learned helplessness (Dishman et al 1997;
reenwood et al 2003a; Moraska and Fleshner 2001). Although

he antidepressant and anxiolytic properties of physical activity
re clear, underlying mechanisms remain unresolved.

Many factors could contribute to the beneficial effects of
hysical activity on mental health; however, given the important
ole of serotonin (5-hydroxytryptamine, 5-HT) in the etiology
nd treatment of affective disorders (Anderson and Mortimore
999; Blier and de Montigny 1999; Den Boer et al 2000; Graeff et
l 1996; Ninan 1999; Owens and Nemeroff 1994), it seems likely
hat central 5-HT systems are involved in the antidepressant and
nxiolytic properties of exercise (Chaouloff 1989; Dey 1994;
unn and Dishman 1991; Greenwood et al 2003a; Ransford
982). We have recently reported that, compared with the
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sedentary condition, 6 weeks of wheel running attenuates the
activity (measured by c-Fos immunoreactivity) of 5-HT neurons
in the rat dorsal raphe nucleus (DRN), during exposure to
uncontrollable stress (Greenwood et al 2003a). The observation
that wheel running alters 5-HT neural responses to stress is
especially important considering that 1) stress is one of the
foremost causal factors in the etiology of depression and anxiety
(D’Aquila et al 1994; Kendler et al 1999); and 2) 5-HT plays a
critical role in the development and expression of stress-induced
depressive and anxiolytic behaviors (Borsini 1995; Gingrich and
Hen 2001; Graeff et al 1996; Lucki 1998; Maier and Watkins 1998;
Neumaier et al 2002; Petty et al 1997). These data suggest that
wheel running might produce its antidepressant and anxiolytic
properties by affecting factors capable of influencing the activity
of 5-HT neurons.

Nearly every region of the brain receives 5-HT innervation
from 5-HT neurons originating from the DRN or median raphe
nucleus (MR) (Jacobs and Azmitia 1992; Molliver 1987). Raphe
5-HT neural activity is modulated by a wide spectrum of factors,
including 5-HT itself (Adell et al 2002). The serotonin transporter
(5-HTT) (Tao et al 2000) and 5-HT1A and 5-HT1B autoreceptors
(Davidson and Stamford 1995; Hervas et al 1998; Hopwood and
Stamford 2001; Sprouse and Aghajanian 1987) each play impor-
tant roles in the regulation of extracellular 5-HT in the raphe and
5-HT release throughout the brain (Adell et al 2002). The 5-HTT
is responsible for the reuptake of 5-HT back into presynaptic
neurons and is active both within the raphe nuclei and in
projection sites (Horschitz et al 2001). Serotonin1A and 5-HT1B

autoreceptors are located on the soma/dendrites and terminals,
respectively, of 5-HT neurons (Riad et al 2000) and, upon
stimulation, inhibit the synthesis and release of 5-HT (Adell et al
2001; Stamford et al 2000). Human and animal studies have
implicated 5-HTT and 5-HT1A and 5-HT1B autoreceptors in
depression (Drevets et al 1999; Lemonde et al 2003; Owens and
Nemeroff 1998), anxiety (Holmes et al 2003; Lin and Parsons
2002; Zhuang et al 1999), and the action of antidepressant/
anxiolytic drugs (Anthony et al 2000; Blier and Ward 2003;

Holmes et al 2002; Schloss and Williams 1998).

BIOL PSYCHIATRY 2005;57:559–568
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In addition to 5-HT, raphe 5-HT neural activity is also
ensitive to norepinephrine, another neurotransmitter classically
ssociated with depression (Anand and Charney 2000; Delgado
nd Moreno 2000; Nutt 1997), anxiety (Gorman et al 2002;
essler and Nemeroff 2000), and the antidepressant/anxiolytic
ffects of physical activity (Dishman 1997b; Dishman et al 1997,
000; Dunn 1996; Ransford 1982). Specifically, norepinephrine
rovides tonic excitation of raphe 5-HT neurons through an

1-adrenergic receptor (�1 ADR) mechanism (Aghajanian 1985;
araban and Aghajanian 1980a, 1980b; Pudovkina et al 2003;
oshimura et al 1985). Although the effects of antidepressant/
nxiolytic medications on the expression or function of raphe �1

DRs are unknown, blockade of �1 ADRs in the DRN prevents
he development of learned helplessness (Grahn et al 2002),
mplicating raphe �1 ADRs in stress-related mood disorders.

It is clear that alterations in raphe 5-HTT, 5-HT1A, 5-HT1B,
nd/or �1 ADRs could contribute to the antidepressant/anxiolytic
ffects of physical activity by altering central 5-HT neural trans-
ission, although effects of physical activity on these parameters

emain largely unexplored. We have recently reported that 6
eeks of wheel running increases 5-HT1A messenger ribonucleic
cid (mRNA) in the DRN and prevents classic learned helpless-
ess behaviors produced by exposure to uncontrollable stress
Greenwood et al 2003a). Interestingly, the behavioral conse-
uences of uncontrollable stress are sensitive to the duration of
rior wheel running, whereby 6 weeks of wheel running pre-
ents learned helplessness, but 3 weeks of wheel running does
ot (Greenwood et al 2003a, in press). The purpose of the
urrent study was to determine the effects of wheel running, after
urations known to be either insufficient (3 weeks) or sufficient
6 weeks) to prevent learned helplessness, on 5-HTT, 5-HT1A,
-HT1B, and �1b ADR mRNA levels in the DRN and MR. The
ffects of acute wheel running (3 days) on these parameters were
lso examined. We chose to focus on the �1b ADR subtype
ecause �1b ADR mRNA is highly expressed throughout the
aphe nuclei (Day et al 1997), and virtually all 5-HT neurons of
he DRN express �1b ADR mRNA (Day et al 2004).

ethods and Materials

nimals
A total of 37 adult male Fischer F344 rats weighing 208.8 �

6.4 g at the beginning of the experiment were housed in a
emperature- (22°C) and humidity-controlled environment and
ere maintained on a 12:12 hour light/dark cycle (lights on 6

M–6 PM). Animals acclimatized to these housing conditions for 1
eek prior to experimental manipulation. All animals were

ndividually housed in Nalgene Plexiglas cages (45 � 25.2 � 14.7
m) with attached running wheels. Wheels were rendered im-
obile during the acclimation period for the physically active

nimals and during the duration of the experiments for sedentary
ats. Care was taken to minimize animal discomfort during all
rocedures. All experimental protocols were approved by the
niversity of Colorado Animal Care and Use Committee. All rats
ad ad libitum access to food and water and were weighed
eekly.

ctivity
Animals were randomly assigned to either remain sedentary

ith locked running wheels (Sedentary; n � 12) or were allowed
oluntary access to running wheels for either 3 days (3-day run;
� 8), 3 weeks (3-week run; n � 8), or 6 weeks (6-week run;

� 9). At the start of a running cycle, the wheels in the cages of

ww.elsevier.com/locate/biopsych
physically active rats were unlocked, and these rats were allowed
voluntary access to their wheels. Daily wheel revolutions were
recorded with Vital View software (Mini Mitter, Bend, Oregon),
and distance was calculated by multiplying wheel circumference
(1.081 m) by the number of revolutions.

In Situ Hybridization
Between 8 AM and 11 AM, rats were killed by decapitation after

their assigned durations of wheel running or sedentary housing.
To control for potential effects of aging, a subgroup (n � 4) of
sedentary rats was killed at each time point. Brains were
removed, frozen rapidly in isopentane and dry ice (�40 to
�50°C), and stored at �80°C until sliced into 10-�m coronal
sections on a cryostat. Dorsal raphe nucleus and MR slices were
thaw-mounted directly onto polylysine-coated slides and stored
at �80°C until processed for single-labeled radioactive in situ
hybridization as described elsewhere (Day and Akil 1996; Green-
wood et al 2003c). Briefly, sections were fixed in 4% paraformal-
dehyde for 1 hour, acetylated in .1 mol/L triethanolamine
containing .25% acetic anhydride (10 min), and dehydrated in
graded alcohol. Complementary (c)RNA ribroprobes (courtesy of
Dr. Stanley Watson, University of Michigan, Ann Arbor) comple-
mentary to 5-HTT (490 mer: 828–1318), 5-HT1A (910 mer:
333–1243), 5-HT1B (860 mer: 210–1070), or �1b ADR (766 mer:
144–910) were prepared from cDNA subclones in transcription
vectors and labeled with [35S]uridine triphosphate (Amersham-
PharmaciaBiotech, Piscataway, New Jersey), according to stan-
dard transcription methods. Riboprobes were diluted in 50%
hybridization buffer containing 50% formamide, 10% dextran
sulfate, 2� saline sodium citrate, 50 �mol/L phosphate-buffered
saline (pH � 7.4), 1� Denhardt’s solution, and .1 mg/mL yeast
transfer RNA. Brain sections representing the rostral to caudal
extent of the DRN and MR were hybridized with the probe
overnight (55°C). The next day, sections were washed in 2�
saline sodium citrate, treated with RNase A (200 �g/mL) for 1
hour at 37°C, and washed to a final stringency of .1� saline
sodium citrate at 65°C for 1 hour. Dehydrated, air-dried sections
were exposed to x-ray film (Biomax-MR; Eastman Kodak, Roch-
ester, New York) for 1 to 3 weeks. For each probe, slides (each
containing four brain sections) from all rats were processed in a
single experiment to allow for direct comparisons. Control
experiments with “sense” probes indicated that the labeling
observed with the “antisense” probes was specific (data not
shown).

Image Analysis
Levels of 5-HTT, 5-HT1A, 5-HT1B, or �1b ADR mRNAs were

analyzed by computer-assisted optical densitometry. Brain sec-
tion images were captured digitally (CCD camera, model XC-77;
Sony, Tokyo, Japan), and the relative optical density of the x-ray
film was determined with Scion image version 4.0 (Scion,
Frederick, Maryland). A macro was written that enabled signal
above background to be automatically determined. For each
section, a background sample was taken over an area of white
matter, and the signal threshold was calculated as mean gray
value of background �3.5 SD. The section was automatically
density-sliced at this value, so that only pixels with gray values
above these criteria were included in the analysis. Results are
expressed as mean integrated density, which reflects both the
signal intensity and the number of pixels above assigned back-
ground (mean signal above background � number of pixels
above background). Care was taken to ensure that equivalent

areas were analyzed between animals. Quantification of 5-HTT,
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-HT1A, 5-HT1B, or �1b ADR mRNAs in the DRN occurred at
ostral (�7.40 mm to �7.64 mm posterior to bregma; Paxinos
nd Watson 1998), mid (�7.80 mm to �8.00 mm) and caudal
�8.3 mm to �8.5 mm) levels. Each subject’s mean integrated
ensity of a particular cRNA probe at a given level represents the
verage of three DRN slices chosen for analysis at that approxi-
ate level. For analysis of each cRNA probe in the MR, four

ections (from approximately �8.0 mm to �8.3 mm posterior to
regma; Paxinos and Watson 1998) were chosen from each
ubject for analysis. The integrated density obtained for each of
he four slices were then averaged to give each subject’s mean
ntegrated density of a particular cRNA probe in the MR.

tatistical Analysis
Body weights were analyzed with two repeated measures

nalysis of variance (ANOVA), one for the first 3 weeks of the
tudy (which included sedentary, 3-week run, and 6-week run
roups) and one for the last 3 weeks (which included remaining
edentary and 6-week run rats only). Repeated measures ANOVA
as also used to analyze the average weekly distance run by the
-week and 6-week runners. Group differences in DRN and MR
-HTT, 5-HT1A, 5-HT1B, or �1b ADR mRNA were analyzed with
ne-way ANOVA. One-way ANOVA was also used to analyze
roup differences in the entire DRN (mean of DRN subregions),
o determine the effect of wheel running on levels of a particular
RNA in the whole DRN. Fisher protected least significant
ifference post hoc analysis was performed when required. No
ifferences due to age were revealed by ANOVA for any
utcome measure between sedentary rats sacrificed after 3 days,
weeks, or 6 weeks of sedentary housing (data not shown).

herefore, the values of 5-HTT, 5-HT1A, 5-HT1B, or �1b ADR
RNAs in the sedentary group represent the average of seden-

ary rats killed after each time point. To determine the relation-
hip between wheel running and expression of 5-HTT, 5-HT1A,
-HT1B, or �1b ADR mRNA in the DRN, regression analysis was
erformed by simple regression, on average distance run and the

ast night’s distance run, to 5-HTT, 5-HT1A, 5-HT1B, or �1b ADR
RNA levels in the rostral, mid, and caudal DRN and MR. Alpha
as set at .05 for each analysis.

esults

ctivity and Body Weight
Weekly body weight change and running distance are shown

n Figure 1. Consistent with prior reports (Campisi et al 2003),
ody weight (Figure 1A) increased steadily over 6 weeks, and
-week and 6-week runners gained less weight (90.9% and 90.0%
f sedentary mean, respectively), compared with sedentary
ounterparts. Repeated measures ANOVA revealed significant
ain effects of time [F (3,66) � 458.443, p � .0001] and activity

F (2,22) � 3.45, p � .05] and a reliable interaction between time
nd activity conditions [F (6,66) � 7.745, p � .0001] on body
eight during the first 3 weeks of the study. Both 3-week and
-week runners weighed less than sedentary rats by the end of
he first week of voluntary wheel access (p � .02 and p � .05,
espectively), and this pattern remained for the duration of the
tudy. Importantly, at no point were the body weights of 3- and
-week runners significantly different from each other. Analysis
f variance also revealed significant main effects of time [F (2,22)
27.24, p � .0001] and activity [F (1,11) � 12.27, p � .005], but

ot a reliable time � activity interaction, on body weight during
he last 3 weeks of the study.
Three-week and 6-week runners ran an average of 12.1 � .7
km and 14.4 � 1.3 km per week, respectively (Figure 1B). The
average weekly running distance of 3-week and 6-week runners
increased steadily during each group’s first 3 weeks of wheel
access. Repeated measures ANOVA revealed a significant main
effect of time [F (2,30) � 11.37, p � .0002] on running distance
during the first 3 weeks of the study. Neither the main effect of
group nor the time � group interaction reached statistical
significance, indicating that the 3-week and 6-week running
groups ran equal distances during the first 3 weeks. As previously
reported in Fischer rats (Campisi et al 2003; Greenwood et al
2003b), the average weekly distance run by the 6-week runners
reached a plateau after the first 3 weeks of wheel access.

5-HTT mRNA
For anatomical reference, 5-HTT mRNA expression in the

Figure 1. Adult male Fischer rats remained sedentary or were allowed
voluntary access to running wheels for 3 days (3-Day Run), 3 weeks (3-Week
Run), or 6 week (6-Week Run). (A) Mean weekly body weight change (in
grams) of sedentary and physically active rats. (B) Mean distance (in kilome-
ters) run each week by the rats in the 3-week and 6-week running groups.
Values represent group means � SEM. BL, baseline.
rostral to caudal DRN and MR is shown in Figure 2. Compared

www.elsevier.com/locate/biopsych
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ith sedentary levels, 3 weeks and 6 weeks, but not 3 days, of
heel running resulted in a reduction in 5-HTT mRNA in the
RN and MR. Analysis of variance revealed reliable main effects
f activity in the rostral [F (3,28) � 2.83, p � .05], mid [F (3,29) �
.0, p � .04], and caudal [F (3,32) � 3.67, p � .02] aspects of the
orsal DRN (Figure 3A); the rostral [F (3,29) � 7.15, p � .001] and
id [F (3,30) � 3.3, p � .03], but not caudal, aspects of the ventral
RN (Figure 3B); the rostral [F (3,29) � 3.6, p � .02] and mid

F (3,30) � 2.9, p � .05] aspects of the lateral DRN (Figure 3C);
nd the MR [F (3,32) � 4.12, p � .01] (Figure 3E). As shown in
igure 3D, there was also a significant main effect of activity on
-HTT mRNA levels in the mean DRN (average of all DRN
ubregions) [F (3,29) � 3.49, p � .02]. Figure 4A contains
epresentative autoradiographs illustrating group differences in
he relative levels of 5-HTT mRNA in the rostral DRN.

igure 2. Representative autoradiographic coronal sections through the
ostral (A), mid (B), and caudal (C) dorsal raphe nucleus (DRN) and median
aphe nucleus (MR) of a sedentary rat processed with in situ hybridization for
erotonin transporter messenger ribonucleic acid (mRNA). Outlined with
oxes are the MR and the dorsal, ventral, and lateral subregions of the DRN

n which quantification of mRNA occurred.

igure 3. Expression of serotonin transporter (5-HTT) mRNA in the dorsal
A), ventral (B), lateral (C), and total (D) dorsal raphe nucleus (DRN) and

edian raphe nucleus (MR) (E) of sedentary rats and rats allowed 3 days
3-Day Run), 3 weeks (3-Week Run), and 6 weeks (6-Week Run) of voluntary
ccess to running wheels. Values represent mean integrated density � SEM.
isher protected least significant difference: *p � .05, **p � .01 with respect

o Sedentary; �p � .05, �� p � .01 with respect to 3-Day Run.

ww.elsevier.com/locate/biopsych
5-HT1A mRNA
Contrary to the effect of wheel running on 5-HTT mRNA,

5-HT1A mRNA was increased in the DRN and MR after 6 weeks,
but not 3 days or 3 weeks, of wheel access. Analysis of variance
revealed significant differences between groups when all DRN
subregions were averaged together [F (3,31) � 2.79; p � .05]
(Figure 5D); however, analysis of individual DRN subregions
revealed that the greatest effect of wheel running occurred in
specific aspects of the DRN. Although the main effect of activity
on 5-HT1A mRNA levels did not quite reach statistical significance
in the rostral aspect of the dorsal DRN [F (3,30) � 2.03, p � .13]
(Figure 5A), ANOVA revealed a reliable main effect of activity in
the mid aspect of the dorsal DRN [F (3,32) � 5.36, p � .004]
(Figure 5A). Wheel running did not affect levels of 5-HT1A mRNA
anywhere in the ventral DRN (Figure 5B), although the main
effect of activity was significant in the mid aspect of the lateral
DRN [F (3,32) � 3.48, p � .02] (Figure 5C) and the MR [F (3,30) �
3.7, p � .02] (Figure 5E). In no other DRN subregion did wheel
running alter 5-HT1A mRNA levels. Representative autoradio-
graphs illustrating the relative levels of 5-HT1A mRNA in the mid
DRN between groups are shown in Figure 4B.

5-HT1B mRNA
Wheel running affected 5-HT1B mRNA levels in select subre-

gions of the DRN similarly to 5-HT1A mRNA levels, although
unlike 5-HTT and 5-HT1A mRNA, 5-HT1B mRNA was rapidly
altered by wheel running. Serotonin1B mRNA levels were re-
duced below sedentary values after only 3 days of wheel running
and remained reduced in 3-week and 6-week runners. The main

Figure 4. Representative autoradiographic coronal sections through the
rostral dorsal raphe nucleus (DRN) showing the relative levels of serotonin
transporter (5-HTT) messenger ribonucleic acid (mRNA) (A), 5-HT1A mRNA
(B), 5-HT1B (C), or �1b-adrenergic receptor (�1b ADR) mRNA (D) labeled with
in situ hybridization in sedentary rats (left column) and rats allowed 3 days
(3-Day Run; second column), 3 weeks (3-Week Run; third column), or 6 weeks
(6-Week Run; right column) of voluntary access to running wheels.
effects of activity on 5-HT1B mRNA levels were not significant



a
h
t
p
W
i
m
v
i
t

�

A
a
w
o
m
D
[
(
a
o
4
m
i
b

w
r

F
(
n
a
R
g
*
.

B.N. Greenwood et al BIOL PSYCHIATRY 2005;57:559–568 563
nywhere in the dorsal (Figure 6A) or lateral (Figure 6C) DRN;
owever, ANOVA revealed significant main effects of activity in
he rostral [F (3,26) � 2.84, p � .05] and mid [F (3,25) � 2.9,
� .05], but not caudal, aspects of the ventral DRN (Figure 6B).
heel running did not significantly reduce 5-HT1B mRNA levels

n the mean DRN (Figure 6D) or MR (Figure 6E), although 5-HT1B

RNA levels followed a similar pattern to that observed in the
entral DRN. Figure 4C contains representative autoradiographs
llustrating group differences in relative levels of 5-HT1B mRNA in
he rostral DRN.

1b ADR mRNA
Compared with sedentary values, wheel running increased �1b

DR mRNA levels in the DRN, although the increase was transient,
ppearing after 3 weeks of wheel access but absent again after 6
eeks. Analysis of variance revealed reliable main effects of activity
n �1b ADR mRNA levels in the rostral [F(3,24) � 7.28, p � .001] and
id [F(3,24) � 3.54, p � .03], but not caudal, aspects of the dorsal
RN (Figure 7A); the rostral [F(3,25) � 2.9, p � .05] and caudal

F(3,24) � 3.12, p � .04], but not mid, aspects of the ventral DRN
Figure 7B); and the rostral [F(3,24) � 4.7, p � .01], but not mid,
spects of the lateral DRN (Figure 7C). There was a significant effect
f activity on �1b ADR mRNA levels in the entire DRN [F(3,20) �
.07, p � .02] (Figure 7D). Wheel running did not alter �1b ADR
RNA levels in the MR (Figure 7E). Representative autoradiographs

llustrating the relative levels of �1b ADR mRNA in the rostral DRN
etween groups are shown in Figure 4D.

No reliable correlations within running groups were revealed
ith simple regression analysis between the average distance

igure 5. Expression of serotonin (5-HT)1A messenger ribonucleic acid
mRNA) in the dorsal (A), ventral (B), lateral (C), and mean (D) dorsal raphe
ucleus (DRN) and median raphe nucleus (MR) (E) of sedentary rats and rats
llowed 3 days (3-Day Run), 3 weeks (3-Week Run), and 6 weeks (6-Week
un) of voluntary access to running wheels. Values represent mean inte-
rated density � SEM. Fisher protected least significant difference: *p � .05,
*p � .01 with respect to Sedentary; �p � .01 with respect to 3-Day Run; #p �
05, ##p � .01 with respect to 3-Week Run.
un, or the distance run on the last night before sacrifice, and
levels of 5-HTT, 5-HT1A, 5-HT1B, or �1b ADR mRNA in any
subregion of the DRN or MR.

Discussion

Wheel running alters the levels of 5-HTT, 5-HT1A, 5-HT1B, and
�1b ADR mRNA in the DRN and 5-HTT and 5-HT1A mRNA in the
MR. Although mRNA levels reported in this study are only indirect
indications of protein expression or function, mRNA is a good
indicator of changes in gene expression that could occur after an
increase in physical activity status. Therefore, these data suggest that
wheel running alters the mRNA expression, and possibly protein
synthesis and function, of several factors involved in regulation of
DRN and MR 5-HT neural activity and central 5-HT neurotransmis-
sion. Because of the important role of 5-HT in depression and
anxiety, the modulation of raphe 5-HT mRNA levels observed in the
current study might be associated with the antidepressant and/or
anxiolytic effects of physical activity.

The general distribution patterns observed here are largely in
agreement with previous studies reporting the localization of
5-HTT, 5-HT1A, 5-HT1B, and �1b ADR in the MR and their wide-
spread distribution throughout all subdivisions and at all levels of
the DRN (Day et al 1997, 2004; Doucet et al 1995; McLaughlin et al
1996; Rattray et al 1999; Wright et al 1995). Although a small
percentage of 5-HT1A and �1b ADR mRNA are expressed in
non-5-HT (i.e., 5-HTT mRNA negative) cells of the raphe nuclei
(Day et al 2004), colocalization studies indicate that the majority of
5-HTT, 5-HT1A, 5-HT1B, and �1b ADR mRNA are located within
5-HT neurons; moreover, an estimated 100% of the 5-HT cells in the
rodent DRN contain 5-HTT, 5-HT1A, 5-HT1B, and �1b ADR mRNA
(Bonaventure et al 1998; Day et al 2004; Rattray et al 1999).

Figure 6. Expression of serotonin (5-HT)1B messenger ribonucleic acid
(mRNA) in the dorsal (A), ventral (B), lateral (C), and mean (D) dorsal raphe
nucleus (DRN) and median raphe nucleus (MR) (E) of sedentary rats and rats
allowed 3 days (3-Day Run), 3 weeks (3-Week Run), and 6 weeks (6-Week
Run) of voluntary access to running wheels. Values represent mean inte-
grated density � SEM. Fisher protected least significant difference: *p � .05

with respect to Sedentary.

www.elsevier.com/locate/biopsych
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herefore, the changes in mRNA expression in the DRN and MR of
hysically active rats observed in the current study are likely
ccurring predominantly in 5-HT neurons.

Although 3 days of wheel running was not sufficient to affect
-HTT mRNA, 5-HTT mRNA levels after 3 weeks of wheel
unning were lower than sedentary values throughout the DRN
nd MR and were maximally reduced after 6 weeks of wheel
unning. The effect of wheel running on 5-HTT mRNA is similar
o some reported effects of chronic selective-5-HT-reuptake
nhibitors, which decrease raphe 5-HTT mRNA (Le Poul et al
000; Lesch et al 1993; Swan et al 1997) and forebrain 5-HTT
igand binding (Kovachich et al 1992; Kugaya et al 2003; Wa-
anabe et al 1993), although the effects of selective-5-HT-re-
ptake inhibitors on 5-HTT are far from resolved (Burnet et al
994; Koed and Linnet 1997; Lopez et al 1994).

Although 5-HTT mRNA is restricted to the cell bodies of origin
ocated in the raphe nuclei, 5-HTT protein is functional both
ithin the raphe nuclei and in axon terminal regions of 5-HT
eurons projecting to distal sites (Tao et al 2000). Therefore,
hanges in 5-HTT mRNA levels could represent altered trans-
orter activity within the DRN and MR and/or in any region of the
rain receiving 5-HT projections from the DRN or MR (see Table
). The regional specificity of the effect of wheel running on
-HTT is important because a decrease in transporter activity
ould potentially produce opposing effects on central 5-HT
eurotransmission, depending on where in the brain the de-

igure 7. Expression of �1b-adrenergic receptor (�1b ADR) messenger ribo-
ucleic acid in the dorsal (A), ventral (B), lateral (C), and mean (D) dorsal

aphe nucleus (DRN) and median raphe nucleus (MR) (E) of sedentary rats
nd rats allowed 3 days (3-Day Run), 3 weeks (3-Week Run), and 6 weeks
6-Week Run) of voluntary access to running wheels. Values represent mean
ntegrated density � SEM. Fisher protected least significant difference: *p �
05, **p � .01, ***p � .001 with respect to Sedentary; �p � .05, ��p � .01,
��p � .001 with respect to 3-Day Run; #p � .05, ##p � .01 with respect to
-Week Run.
rease occurs. For example, an increase in extracellular 5-HT in

ww.elsevier.com/locate/biopsych
the raphe nuclei induced by a reduction in 5-HT uptake capa-
bility could inhibit raphe 5-HT neural activity and 5-HT release in
terminal regions by increasing 5-HT1A autoreceptor–mediated
inhibition of 5-HT cell firing (Rutter et al 1995). Also, 5-HT1A

autoreceptor–mediated inhibition of 5-HT neural activity could
be even further exacerbated in physically active rats that might
have an increase in 5-HT1A autoreceptors in the DRN. In contrast,
a decrease in 5-HT uptake capability in other brain regions could
result in an increase in 5-HT neurotransmission in those regions
that is similar to the effects of 5-HTT blockade (Rutter and
Auerbach 1993). Future studies will be needed to clarify the
neuroanatomical specificity of the effects of wheel running on
5-HTT and the functional outcome of such changes on 5-HT
neurotransmission.

Six weeks of wheel running increased levels of 5-HT1A mRNA
in the dorsal aspect of the rostral–mid DRN, the lateral aspect of
the mid DRN, and the MR. The regional selectivity of the effect of
6 weeks of wheel running on 5-HT1A mRNA in the DRN is similar
to that previously reported, with the exception of that for the
lateral–mid DRN in which an increase in 5-HT1A mRNA was not
previously observed (Greenwood et al 2003a). In our previous
study, however, we did not differentiate between the rostral and
mid or lateral DRN. Thus, examination of the lateral DRN with
finer anatomical precision in the current study could account for
this discrepancy, illustrating the importance of independent
examination of unique DRN subregions.

It is especially interesting that wheel running increased 5-HT1A

mRNA in the raphe nuclei. An increase in 5-HT1A autoreceptor
function could presumably decrease 5-HT neurotransmission by
enhancing autoinhibition of 5-HT neurons. This effect is opposite to
that potentially produced by other changes observed in the raphe
nuclei of physically active rats, such as a decrease in 5-HTT and
5-HT1B autoreceptors; that could lead to an increase in 5-HT
neurotransmission. Furthermore, in contrast to the effects of wheel
running, other antidepressant treatments decrease raphe 5-HT1A

mRNA (Le Poul et al 2000) and desensitize raphe 5-HT1A autore-
ceptors (Blier et al 1998; Elena Castro et al 2003; Mochizuki et al
2002), effects that might help reverse the deficit in 5-HT neurotrans-
mission thought to occur in depression. It is possible that alterations
in 5-HT1A autoreceptors might be one, but not the only, component
involved in the complex etiology and treatment of depression.
Indeed, both increased (Stockmeier et al 1998) and decreased
(Arango et al 2001; Drevets et al 1999, 2000) density of 5-HT1A

autoreceptor binding have been observed in the raphe nuclei of
suicides or depressed subjects. Regardless of the role of 5-HT1A

autoreceptors in affective disorders, the 5-HT1A autoreceptor is only
one factor involved in regulation of central 5-HT neurotransmission,
and the contribution that the increase in 5-HT1A mRNA has on
overall 5-HT transmission in the brains of physically active rats
remains unknown.

In contrast to the effects of wheel running on 5-HT1A autore-
ceptor mRNA, wheel running rapidly decreased 5-HT1B autore-
ceptor mRNA in the DRN. Although the decrease in 5-HT1B

mRNA was only statistically reliable in the ventral aspect of the
rostral–mid DRN, a similar pattern was also present in the whole
DRN and the MR. The group differences in the dorsal DRN and
MR likely failed to reach statistical significance owing to the
relatively lower levels of 5-HT1B mRNA in these regions com-
pared with the ventral portion of the DRN.

The observed decrease in DRN 5-HT1B mRNA is similar to
previous studies reporting reduced 5-HT1B autoreceptor mRNA
in the DRN (Anthony et al 2000; Neumaier et al 1996) and

presynaptic 5-HT1B autoreceptor sensitivity in the hypothalamus
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nd hippocampus (Dremencov et al 2000; Gur et al 2002;
ewman et al 2000) after chronic selective-5-HT-reuptake inhib-

tors. A decreased ability to synthesize terminal 5-HT1B autore-
eptors, similar to reductions in 5-HTT in terminal regions of the
aphe nuclei, could lead to an enhancement of basal 5-HT
eurotransmission in projection regions of the ventral DRN in
hysically active rats (Table 1). Interestingly, several weeks of
readmill training has also been reported to reduce postsynaptic
-HT1B mRNA in the cerebellum and frontal cortex (Chennaoui et
l 2001) and desensitize 5-HT1B receptors in the substantia nigra
Chennaoui et al 2000; Seguin et al 1998). These data suggest that
hysical activity might reduce the expression and/or activity of
oth terminal 5-HT1B autoreceptors as well as postsynaptic
-HT1B heteroceptors.

Recent work by Neumaier et al suggests that increased DRN
-HT1B levels are associated with both increased anxiety in rats
hat have been exposed to stress (Clark et al 2002; Neumaier et
l 1997) and reduced anxiety (Kaiyala et al 2003) or stress
esistance (Neumaier et al 2002) in stress-naïve rats. Wheel
unning, however, in the absence of stress, produces anxiolysis
Dishman 1997b) and stress resistance (Dishman et al 1997;
reenwood et al 2003a), yet is accompanied by a decrease in

aphe 5-HT1B mRNA. It is now clear that the involvement of the
-HT1B receptor in depression and anxiety is complex and could
epend on the stress status, the genetic background, and the
hysical activity status of the animal.

Changes in 5-HTT, 5-HT1A, and 5-HT1B mRNA levels occurred in
pecific DRN subregions and at specific levels. Although the effect
f wheel running on overall 5-HT neurotransmission remains
nknown, one functional consequence of the regional specificity of
he effects of wheel running could be selective changes in 5-HT
eurotransmission in brain areas receiving 5-HT projections from
hose areas of the DRN or MR with altered 5-HTT, 5-HT1A, or 5-HT1B

RNA levels. For example, wheel running reduced 5-HT1B mRNA
evels in specifically the ventral aspect of the rostral to mid DRN, but
ot the MR. This suggests that wheel running might alter terminal

able 1. Main Serotonergic Projection Sites of the Dorsal and Median Raph

Region and Subregion Serotonergic Projections Site

orsal Raphe Nucleus
Rostral Caudate putamen, amygdala, striatum, me

substantia nigra, olfactory cortex, septu
Mid Caudate putamen, central amygdala, later

nucleus, dorsal cap of the paraventricula
hypothalamic nucleus, dorsal hippocam
septum

Caudal Hippocampus, locus coeruleus
Dorsal Caudate putamen, lateral and medial hypo

frontal cortex, thoracic spinal cord
Ventral Cortex, caudate putamen
Lateral Lateral and medial hypothalamus
Unspecified Dorsal striatum, globus pallidus, mid-poste

hippocampus, basolateral amygdala, ro
ventrolateral medulla, frontal cortex, int
leaflet, bed nucleus of the stria terminal

edian Raphe Nucleus Suprachiasmatic nucleus, ventral posterior
hypothalamus, anterior hypothalamus, v
dorsomedial hypothalamus, medial mam
nucleus, hippocampus, caudate putame
medial septum, locus coeruleus
-HT1B autoreceptor regulation in those brain regions receiving
projections from the ventral DRN, such as the caudate putamen and
cortex (Kazakov et al 1993; Lowry 2002), whereas terminal 5-HT1B

autoreceptors in other regions innervated predominantly by the
dorsal aspect of the DRN or the MR, such as the hippocampus
(Lowry 2002), will not be affected. Table 1 lists the main 5-HT
projections from the DRN and MR so that similar anatomical
comparisons can be made for the other mRNA changes observed.
Refer to Lowry (2002) for a detailed description of 5-HT projections
from the raphe nuclei.

The level of �1b ADR mRNA throughout the DRN was
increased after 3 weeks of wheel running, but this increase was
not present in the MR and was not sustained after 6 weeks of
wheel running. The current study is the first of which we are
aware to investigate the effects of physical activity on central �1b

ADRs. The transient effect of wheel running on �1b ADR mRNA
is intriguing and could possibly be induced by some unidentified
reaction of central norepinephrine systems to wheel running that
either diminishes over time or is compensated for by changes in
receptor expression. Indeed, central norepinephrine systems are
activated by acute exercise (Meeusen et al 1997) and are altered
by habitual physical activity (Brown et al 1979; Chaouloff 1989;
Da Costa Gomez et al 1996; Dishman 1997a, 1997b; Dishman et
al 1997, 2000; Dunn 1996; Greenwood et al 2003a; Lambert 1998;
Ransford 1982; Soares et al 1999).

We have recently observed that the behavioral effects of
wheel running, like the time-dependent therapeutic properties of
antidepressant drugs (Quitkin et al 1996), are sensitive to the
duration of activity whereby 6 weeks, but not 3 weeks, of wheel
running prevents the shuttle-box-escape deficit and exaggerated-
fear conditioning associated with learned helplessness (Green-
wood et al, in press). This time-dependent effect presents a
useful tool to help determine how changes in the brain that might
occur after different durations of wheel running contribute to the
stress-protective effects of exercise. Although many factors could
be involved, of the changes reported here, only the increase in
raphe 5-HT mRNA after 6 weeks of wheel running occurs in a

clei
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unning in the learned helplessness model. Growing evidence
uggests that learned helplessness depends on hyperactivity and
ensitization of DRN 5-HT neurons produced by uncontrollable
tress (Grahn 1999; Maier and Watkins 1998; Maier et al 1993,
994, 1995a, 1995b; Maswood et al 1998; Takase et al 2004).
herefore, the increase in 5-HT1A autoreceptor mRNA produced
y 6 weeks of wheel running could contribute to the prevention
f learned helplessness by constraining DRN 5-HT neural activity
nd 5-HT1A autoreceptor down-regulation during uncontrollable
tress (Greenwood et al 2003a).

The current results suggest that wheel running modulates mRNA
or several factors involved in regulation of DRN and MR neural
ctivity and central 5-HT neurotransmission. Although only correl-
tive, these data suggest that increased 5-HT1A mRNA might be
ore directly related to the protective effect of wheel running

gainst learned helplessness than other changes that occur before 6
eeks of wheel access. These data further support a role for 5-HT

n the stress resistance produced by wheel running and the antide-
ressant and anxiolytic properties of exercise.

Funding for these studies was provided by a grant awarded to
F from the National Institutes of Health (National Institute of
llergy and Infectious Disease, AI48555).
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