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ABSTRACT: Environmental enrichment (EE) and voluntary exercise
(VEx) have consistently been shown to increase adult hippocampal neu-
rogenesis and improve spatial learning ability. Although it appears that
these two manipulations are equivalent in this regard, evidence exists
that EE and VEx affect different phases of the neurogenic process in dis-
tinct ways. We review the data suggesting that EE increases the likeli-
hood of survival of new cells, whereas VEx increases the level of prolif-
eration of progenitor cells. We then outline the factors that may medi-
ate these relationships. Finally, we provide a model showing that VEx
leads to the convergence of key somatic and cerebral factors in the den-
tate gyrus (DG) to induce cell proliferation. Although insufficient evi-
dence exists to provide a similar model for EE, we suggest that EE-
induced cell survival in the DG involves cortical restructuring as a
means of promoting survival. We conclude that EE and VEx lead to an
increase in overall hippocampal neurogenesis via dissociable pathways,
and should therefore, be considered distinct interventions with regard
to hippocampal plasticity and associated behaviors. VVC 2006 Wiley-Liss, Inc.
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INTRODUCTION

The hippocampus is a dynamic brain structure critical to the process
of memory consolidation (Scoville and Milner, 1957; Frankland and
Bontempi, 2005). One of its unusual features is that the dentate gyrus
(DG) subfield is known to constitutively engage in the process of neuro-
genesis throughout adulthood. Ultimately these new cells appear to be
functionally integrated into the existing neuronal network (van Praag
et al., 2002; Overstreet et al., 2004; Schmidt-Hieber et al., 2004). Inter-
estingly, this process is not static, and behavioral manipulations such as
housing an animal in an enriched environment (EE), or allowing them
to engage in voluntary exercise (VEx) on a running wheel, can increase
the rate of hippocampal neurogenesis.

Early studies noted that animals raised in an EE performed better on
hippocampal dependent tasks than age-matched cohorts that were raised
in standard caging conditions (Hebb, 1949; Paylor et al., 1992). Subse-
quently, it was shown that EE produced an overall increase in the
amount of neurogenesis, which could be observed in both rats and mice
(Paylor et al., 1992; Kempermann et al., 1997; Pham et al., 1999; van

Praag et al., 1999a,b; Auvergne et al., 2002; Frick and
Fernandez, 2003; Cao et al., 2004; Bruel-Jungerman
et al., 2005). In a series of experiments, van Praag and
colleagues (1999a) found that when the individual
components of EE were separated, only one compo-
nent, the exercise wheel, continued to be associated
with enhanced neurogenesis. Animals that were housed
in cages that also contained a running wheel were
observed to engage in prodigious amounts of VEx,
running upwards of 4 km a night. These animals also
showed almost a 3-fold increase in neurogenesis, as
well as increased performance in the Morris watermaze
(van Praag et al., 1999b). During these studies it be-
came evident that EE and VEx appeared to increase
neurogenesis differently. VEx increased both cell pro-
liferation and neurogenesis, while EE only appeared to
increase neurogenesis without affecting cell prolifera-
tion (Fig. 1). In this review we will explore how EE
and VEx might differentially affect mechanisms that
are involved in distinct phases in the overall process of
neurogenesis, and these changes are summarized in
Figure 2.

CORTICAL REORGANIZATION
WITH VEx AND EE

Both VEx and EE produce a number of changes in
the cortex. Rearing mice in an EE expedites the devel-
opment of the visual cortex (Cancedda et al., 2004;
Sale et al., 2004), as well as the auditory (Dinse,
2004; Engineer et al., 2004), olfactory (Hennessy
et al., 1977), and even tactile systems (Xerri et al.,
1996; Coq and Xerri, 1998). EE can also enhance the
performance of animals on several different learning
and memory tasks that involve hippocampal function-
ing (Krech et al., 1962; Pacteau et al., 1989; Wain-
wright et al., 1993; Rosenzweig and Bennett, 1996;
Kempermann et al., 1998; Schrijver et al., 2004). In
addition to this cognitive enhancement, EE is corre-
lated with the restructuring of a number of nonsen-
sory regions of the brain, including the association
cortices and the hippocampus (Diamond et al., 1972,
1976; Berman et al., 1996; Faherty et al., 2003;
Turner et al., 2003). It seems plausible, then, that EE
might promote cell survival by way of these mecha-
nisms that are already engaged in this cortical reorgan-
ization. In other words, increased cell survival might
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be a by-product of these intrinsic changes ongoing in already
established neurons.

Few studies have directly investigated the relationship be-
tween cortical reorganization and VEx. VEx has been shown to
increase the thickness of specific subregions in the motor cortex
(Anderson et al., 2002), indicating that some cortical restruc-
turing does occur following exercise. Additionally, access to a
running wheel increased the metabolic capacity within the
motor cortex (McCloskey et al., 2001). These studies indicate
that VEx might induce some cortical restructuring; however,
this area needs to be further investigated to draw any specific
conclusions.

EE has been shown to increase both the density of dendritic
spines and basal synaptic strength (Green and Greenough,
1986; Berman et al., 1996; Foster et al., 1996). It is therefore
not surprising that this manipulation also increases the expres-
sion of two proteins found at a mature synapse: synaptophysin
and Postsynptic-Density-95 (PSD-95; also known as SAP-90).

Synaptophysin is a synaptic vesicle glycoprotein that has been
used by several groups to mark presynaptic growth. In a recent
study, young female C57Bl/6 mice exposed to an EE for 3 h/
day for 6 weeks had significantly higher levels of synaptophysin
in the hippocampus (Lambert et al., 2005); others have also
reported similar findings (Frick and Fernandez, 2003; Nithia-
nantharajah et al., 2004). PSD-95 is a major component of
mature dendritic spines that is involved in the clustering of
synaptic proteins and channels involved in synaptic plasticity,
(i.e., N-methyl-D-aspartate (NMDA) receptors), and shows
increased expression in the hippocampus following EE (Nithia-
nantharajah et al., 2004). This increase in the levels of synapto-
physin and PSD-95 in response to enrichment may reflect
alterations in existing dendritic spines that may also contribute
to the beneficial effects of enrichment on synaptic plasticity
and learning and memory.

VEx has also been recently shown to increase spine density
(Eadie et al., 2005), which suggests that key synaptic molecules

FIGURE 1. Voluntary exercise leads to an increase in overall
neurogenesis by increasing cellular proliferation, whereas environ-
mental enrichment does so by decreasing the normal loss of cells
between 24 h and 4 weeks in cellular development. (A) Both
manipulations lead to a massive increase in the number of BrdU-
positive cells at 28 days post-BrdU injection. (B) Voluntary exer-

cise leads to increase in the number of BrdU-positive cells 24 h
post-BrdU injection and environmental enrichment (EE) leads to
no change at this time point. (C) The percentage of BrdU-positive
cells remaining at 4 weeks. (D) Both manipulations lead to a com-
parable increase in neuronal differentiation.
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are altered following this behavioral manipulation. Indeed sev-
eral genes important for synaptic plasticity have been found to
be altered following both acute and chronic VEx (Molteni
et al., 2002). A number of presynaptic vesicle trafficking pro-
teins were increased, including synapsin 1, synaptotagmin, and
syntaxin. Despite these changes, alterations in presynaptic trans-
mitter release have not been reported following VEx (van Praag
et al., 1999b, Farmer et al., 2004). Postsynaptic modifications
clearly exist that could affect synaptic communication as well.
For example, the mRNA for GluR5, NR2A, NR2B, and exci-
tatory amino acid carrier 1 (EAAC1) have all been shown to be
increased following VEx, whereas mRNAs associated with syn-
aptic inhibition, such as GABAA and GAD65, have been
shown to be downregulated (Farmer et al., 2004; Molteni

et al., 2002). Although these structural changes might enhance
synaptic plasticity by upregulating the proteins important for
long-term potentiation (LTP), the effects on neurogenesis
might be related to an overall increase in excitability that could
result from such changes. Indeed, there is evidence for changes
in both synaptic plasticity and electrical activity with exercise.

CHANGES IN SYNAPTIC PLASTICITY

Long lasting changes in the ability of the cells to communicate
with one another were first shown in the DG (Bliss and Gard-
ner-Medwin, 1971, 1973). LTP is an increase in the communica-
tion between cells following electrical stimulation, while long-

FIGURE 2. Summary of changes induced by voluntary exercise
and environmental enrichment. A. Voluntary exercise (VEx) affects
dendritic spine density, the expression of synaptic proteins, recep-
tors, and neurotrophins, induces vascular changes, and alters
learning and memory. The changes, in turn, have either been
shown to increase cell proliferation and neurogenesis or it is pro-
posed that a relationship might exist. B. Environmental enrich-

ment (EE) affects dendritic spine density, synaptic proteins, receptors,
cortical reorganization, learning and memory, and the expression of
neurotrophins. These EE-induced changes have either been shown to
increase neurogenesis or it is proposed that a relationship exists. Solid
arrows indicate a direct relationship while dashed and lighter arrows
indicate hypothesized relationships. [Color figure can be viewed in
the online issue, which is available at www.interscience.wiley.com.]
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term depression (LTD) is a decrease in communication between
cells. Both LTP and LTD appear to be dependent upon the activ-
ity of NMDA receptors in the DG (Christie and Abraham,
1992), and it has been suggested that NR2A subunits may be
necessary for LTP whereas NR2B subunits may be necessary for
LTD (Christie and Abraham, 1992; Liu et al., 2004). VEx is
associated with increased LTP in the DG, as well as enhanced
performance on a hippocampal-dependent learning and memory
tasks (van Praag et al., 1999a); these findings have also been
replicated since the initial report (Brown et al., 2003; Fabel et al.,
2003; Kitamura et al., 2003; Rhodes et al., 2003; Crews et al.,
2004; Farmer et al., 2004; Holmes et al., 2004; Bjornebekk
et al., 2005; Naylor et al., 2005). VEx can also lead to an
increase in NMDA NR2B subunit mRNA in the DG (Farmer
et al., 2004). Interestingly, transgenic mice that overexpress
NR2B subunits also show enhanced LTP and increased perform-
ance on learning and memory tasks (Tang et al., 2001). These
studies are seemingly incongruent with the notion that NR2B
subunits preferentially contribute to LTD, but synaptic alterations
to and changes in dendritic structures that result from VEx might
account for the enhanced LTP and learning following Vex,
despite an increase in the number of NR2B subunits.

It also appears that VEx can also act as a therapeutic intervention
for some of the deficits associated with disorders such as fetal alco-
hol syndrome and alcohol withdrawal (Crews et al., 2004; Christie
et al., 2005). Normally, prenatal ethanol exposure induces neuronal
loss, decreased LTP and impaired learning on hippocampal depend-
ent tasks. These deficits can be largely ameliorated in the hippocam-
pus if these animals are allowed exposure to a running wheel early
in life (Christie et al., 2005). Interestingly, VEx can even ameliorate
the detrimental effects of ethanol consumption on cell proliferation
(Nixon and Crews, 2002). Although ethanol can act as an NMDA
antagonist (Yang et al., 1996; Steffensen et al., 2000; Ariwodola
et al., 2003), other reports have also indicated that NMDA antago-
nists can increase cell proliferation and neurogenesis (Cameron
et al., 1995). One possible explanation for these opposing results
might be that transient NMDA receptor blockade leads to a subse-
quent increase in excitatory activity (Krystal et al., 2003), while
chronic ethanol consumption leads to a general increase in inhibi-
tion. It remains to be determined whether EE, following prenatal
ethanol exposure, can provide these same benefits in animals.

In contrast to Vex, EE is not associated with increased LTP

in the DG; rather EE exposure actually reverses already estab-

lished LTP (Abraham et al., 2002). The reason for this reversal

is not clear, as an increase in the expression of number of mole-

cules that are associated with LTP has been reported following

EE (Tang et al., 2001). Among these changes are increases in

particular AMPA receptor subunits, including the number of

GluR1, GluR2, and GluR4 subunits (Tang et al., 2001; Naka

et al., 2005) and the sensitivity of these subunits (Gagne et al.,

1998). Interestingly, mice that overexpress the NR2B subunit

of the NMDA receptor show an increase in the expression of

NR2A and NR2B subunits following EE, similar to that seen

in control animals (Tang et al., 2001). Therefore, the relation-

ship between EE and LTP still needs to be further elucidated.

ELECTRICAL ACTIVITY

There is some evidence that different forms of electrical
activity might play a role in neurogenesis, and this may serve
as a common ground for both Vex- and EE-induced changes in
neurogenesis. When animals engage in voluntary movements or
sensory exploration, the hippocampal EEG is predominantly
composed of rhythmic oscillatory activity in the form of theta
wave activity (2 and 12 Hz) (Bland and Oddie, 1998). On the
other hand, sensory information reaches the hippocampus via
the thalamocortical system in the form of alpha wave activity
(8–15 Hz) (Schurmann et al., 2000). It is likely that the rela-
tive strength or nature of this input signal to the hippocampus
is enhanced in response to EE, a view which has been sup-
ported by studies showing an increase in basal synaptic strength
in the molecular layer of the DG following EE (Green and
Greenough, 1986; Foster et al., 1996).

Although few studies have systematically studied the effect of
electrical activity on adult hippocampal neurogenesis, it has
become clear that this relationship is important. The induction
of LTP at mossy fibers, a condition that would antidromically
activate the DG, enhances neurogenesis in the DG (Derrick
et al., 2000). Recently, hippocampal neuroprogenitor cells were
also shown to proliferate following excitatory activity (Deisser-
oth et al., 2004). Indeed, acute increases in excitatory input
induced by ischemia or seizure activity can also induce prolifera-
tion in the DG in vivo (Liu et al., 1998; Parent et al., 1997,
1998; Gould et al., 2000; Arvidsson et al., 2001) while disrupt-
ing excitatory input to the hippocampus decreases cell survival
(Van der Borght et al., 2005). Again the finding that the
NMDA receptor also induces proliferation in the DG
(Cameron et al., 1995) seems to contradict this notion and it
needs to be clarified if the application of NMDA antagonists in
vivo can lead to increased excitatory activity by disinhibiting
local circuits (Krystal et al., 2003). Any alterations in excitability
might also be indirect. NMDA antagonists reduce the power of
theta activity in the hippocampus directly (Leung and Shen,
2004); however, this may be followed by some sort of rebound
excitation when the effects of the antagonists wear off. Excito-
toxic lesions of the entorhinal cortex (EC) induce proliferation
in the hippocampus (Cameron et al., 1995); however, this likely
reflects the effects of the seizure activity induced by the lesion.
In a similar study, deafferentation of the EC to the hippocam-
pus was shown to increase mRNA for vascular endothelial
growth factor (VEGF), a potent neurotrophic factor (Wang
et al., 2005). Thus the effects of electrical activity on hippocam-
pal neurogenesis may be either direct (activation of glutamate
receptors) or indirect (increases in neurotrophic factors).

CHANGES IN THE VASCULATURE

One of the more obvious differences between VEx and EE is
that the activity level of animals in the VEx condition is much
higher than that in the EE condition. While animals may
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engage in some exploratory behavior whenever new objects are
introduced to the EE, animals in cages with wheels spend an
incredible amount of time running and, on average, can run
approximately 4.8 km/day (Farmer et al., 2004). Because of
this vigorous physical activity, one might expect that VEx
(rather than EE) would be more likely to increase blood flow
through the vasculature of the brain. This is indeed the case.
Motor activity is associated with an increase in cerebral blood
volume (Swain et al., 2003), cerebral blood flow (Yancey
and Overton, 1993), blood-brain-barrier (BBB) permeability
(Sharma et al., 1991), angiogenesis (Black et al., 1989, 1990;
Isaacs et al., 1992; Kleim et al., 2002; Swain et al., 2003), and
glucose utilization (Vissing et al., 1996). Motor activity is also
accompanied by substantial increases in circulating hormone
and growth factor levels. Because of increased circulation, fac-
tors that may promote mitotic activity and cell survival might
more readily be delivered to the hippocampus, which may
account for why VEx has such a robust effect on cell prolifera-
tion in the DG.

To our knowledge, not a single study exists that demon-
strates EE-induced alterations to the cerebrovascular system
(blood flow, angiogenesis or BBB permeability). In fact, one
study has actually reported that EE does not affect the reduc-
tions in cerebral blood flow that normally occur with age
(Goldman et al., 1987). Therefore, no specific conclusions can
be drawn as to the contribution of EE to changes in vascular
activity, leaving this an interesting area for future studies.

MOLECULAR EFFECTS OF VEx AND EE

Perhaps most pertinent to our discussion of neurogenesis are
alterations in the expression of trophic factors, which are
powerful promoters of neuronal survival and differentiation
during development (Barde, 1994). EE increases the expression
of several different neurotrophic factors that have been impli-
cated in cell proliferation and neuronal differentiation and sur-
vival. The levels of brain-derived neurotrophic factor (BDNF),
glial-derived neurotrophic factor (GDNF), neuronal growth
factor (NGF), neurotrophin-3 (NT-3) and many of their corre-
sponding receptors increase in the hippocampus following EE
(Torasdotter et al., 1996, 1998; Pham et al., 1999; Young
et al., 1999; Ickes et al., 2000; Gobbo and O’Mara, 2004).
Like EE, VEx can increase levels of BDNF, (Adlard et al.,
2004; Farmer et al., 2004; Vaynman et al., 2004a) and the
amount of BDNF expression is directly related to the amount
of VEx in which an animal engages in (Adlard et al., 2004).
Additionally, the observed increase in cerebral blood flow,
angiogenesis and BBB permeability may be important in shut-
tling key circulating factors to neuronal circuits, which Palmer
has called ‘‘somatic regulators’’ (Fabel et al., 2003). These fac-
tors include VEGF, insulin-like growth factor 1 (IGF-1) and
fibroblast growth factor 2 (FGF-2). Importantly, all of these
somatic regulators have been reported to be increased in circu-
lation following exercise (Schwarz et al., 1996; Asano et al.,
1998; Schobersberger et al., 2000; Trejo et al., 2001; Campu-

zano et al., 2002) and stimulate hippocampal neurogenesis in
the absence of VEx (Aberg et al., 2000; Jin et al., 2002). The
following is a review of the contribution of each trophic factor
to cell proliferation and or cell survival.

b-ENDORPHINS

Exercise has long been known to increase b-endorphins in
humans, and in fact b-endorphins are a candidate mechanism
to explain why people become ‘‘addicted’’ to running (Appenz-
eller, 1981; Colt et al., 1981; Gambert et al., 1981; Farrell
et al., 1982). b-endorphins are created when the pre-pro-hor-
mone proopiomelanocortin (POMC) undergoes cleavage to
give way to a number of hormones including the melanocortins
and the opiate peptides (Hadley and Haskell-Luevano, 1999).
When b-endorphins bind to their receptors in neural mem-
branes, cAMP levels in the neurons are reduced, and the con-
ductance of voltage-gated Ca2þ channels is decreased (Hadley
and Haskell-Luevano, 1999). Recent studies have shown that
an increase in cell proliferation can be produced by the direct
infusion of opiates, and that opiate receptor antagonists
decrease cell proliferation in the DG (Persson et al., 2003a,b).
Furthermore, when the transcriptional control of enhanced
green fluorescent protein (eGFP) is linked to POMC genomic
sequences, eGFP is expressed in only new cells in the DG
(Overstreet et al., 2004). Additionally, VEx was shown to
increase the number of EGFP-labeled cells in this particular
study (Overstreet et al., 2004). Together these results implicate
POMC, and possibly b-endorphins, in the genesis of new neu-
rons in the DG of adult animals.

VASCULAR ENDOTHELIAL GROWTH FACTOR

VEGF is an angiogenic protein with both neurotrophic and
neuroprotective effects and has been shown to increase when
humans exercise (Schobersberger et al., 2000). Normally VEGF
promotes the proliferation of vascular endothelial cells, but it
has also been shown to stimulate neuronal precursors in murine
cerebral cortical cultures and in vivo in the adult rat brain (Jin
et al., 2002). The effects were primarily to increase cell prolif-
eration, and no alterations in cell survival were observed (Jin
et al., 2002). Additionally, when VEGF is secreted from the
blood, it can stimulate the formation of new blood vessels
(Senger et al., 1983; Leung et al., 1989; Holmes and Zachary,
2005). Therefore, VEGF seems like an ideal trophic factor to
induce the changes in angiogenesis and cellular proliferation
that occur with VEx.

BRAIN-DERIVED NEUROTROPHIC FACTOR

BDNF is a member of the neurotrophin family—the same
family that includes nerve growth factor and neurotrophins 3
and 4 (Barde, 1989). BDNF plays a critical role in the brain
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throughout development and adulthood by promoting neuro-
nal survival and regeneration (Thoenen, 1991; Wozniak, 1993;
Vanhoutte and Bading, 2003; Horch, 2004).

Many studies have demonstrated that exercise leads to
increased levels of BDNF mRNA or protein (Neeper et al.,
1996; Russo-Neustadt et al., 1999; Widenfalk et al., 1999;
Berchtold et al., 2001, 2002; Cotman and Berchtold, 2002).
Interestingly, VEx increases BDNF expression in the CNS
(Gomez-Pinilla et al., 2002; Farmer et al., 2004; Vaynman
et al., 2004b), but not in skeletal muscle (Widegren et al.,
2000), indicating that BDNF may play a significant role specif-
ically in the brain. Indeed, injecting BDNF directly into the
hippocampus of rats can enhance proliferation and neurogene-
sis in the subgranular zone of the DG (Scharfman et al.,
2005). A recent study of mice genetically engineered to exhibit
decreased levels of BDNF suggest that BDNF is necessary for
the long term survival of new neurons in the DG, as these
mice had fewer BrdU labeled cells 3 weeks after the initial
BrdU injection (Sairanen et al., 2005). Lowenstein and Arsen-
ault (1996) have shown that application of BDNF (and FGF-
2—discussed later) onto microdissected dentate granule cells
increases their survival and neuronal differentiation by 30–80%
(Lowenstein and Arsenault, 1996). Application of BDNF and
NGF to cultured hippocampal neurons has also shown to be
protective against hypoglycemic damage (Kokaia et al., 1994;
Mitchell et al., 1999), ischemia (Ferrer et al., 1998; Mitchell
et al., 1999), and ethanol (Mitchell et al., 1999). Further,
BDNF knockout mice show an increase in apoptosis specifi-
cally in the DG and subventricular zone (Linnarsson et al.,
2000)—the two regions that have consistently been shown to
exhibit adult neurogenic activity. Taken together, these data
suggest that VEx might be an effective method for increasing
BDNF, which, in turn, can enhance the survival of newborn
cells in the hippocampus.

INSULIN-LIKE GROWTH FACTOR 1 AND
FIBROBLAST GROWTH FACTOR 2

Trejo et al. (2001) have shown that IGF-1 is critical to exer-
cise-induced increases in adult hippocampal neurogenesis by
blocking the entrance of circulating IGF-1 into the brain and,
in turn, completely inhibiting exercise-induced neurogenesis.
Similarly, Fabel et al. (2003) have shown that VEGF is also
critical for this effect. Using an adenoviral vector system to pro-
duce high levels of circulating VEGF antagonist, which does
not cross the BBB, these authors also blocked exercise-induced
increase in adult hippocampal neurogenesis. A similar study has
not yet been conducted for FGF-2. However, FGF-2 can affect
proliferation as it has been found that maximal cell prolifera-
tion is produced with coapplication of IGF-1 and FGF-2
(Aberg et al., 2003). Additionally, FGF-2 mRNA is upregu-
lated in the hippocampus following exercise (Gomez-Pinilla
et al., 1997). Therefore, circulating IGF-1 and VEGF need to
cross the BBB so as to affect neurogenesis, and appear to be
necessary for exercise-induced neurogenesis while exercise-in-

duced upregulation of FGF-2 mRNA might complement the
effect of IGF-1 on cell proliferation.

GLIAL-DERIVED NEUROTROPHIC FACTOR,
NERVE GROWTH FACTOR, AND

NEUROTROPHIN-3

EE increases the expression of GDNF, NGF, and neurotro-
phin-3 (NT-3) (Torasdotter et al., 1998; Young et al., 1999;
Ickes et al., 2000). In relation to neurogenesis, GDNF appears
to increase proliferation and differentiation (Chen et al., 2005),
while NT-3 enhances neurite outgrowth and branching (Mor-
fini et al., 1994), and promotes cell survival (Bertollini et al.,
1997; Vicario-Abejon et al., 1995).VEx, however, has been
shown to actually decrease the expression of NT-3 (Johnson
and Mitchell, 2003) while it has been shown to increase the
expression of NGF (Neeper et al., 1996). The relationship
between GDNF and exercise, however, needs to be further elu-
cidated. Taken together, these studies suggest that GDNF and
NT-3 might account for enhanced neurogenesis following EE
as these trophic factors appear to be more instrumental with
survival instead of proliferation.

SEROTONIN (5HT)

Although not generally considered a neurotrophic factor,
5HT also appears to act like a trophic factor in some instances.
Alterations in the levels of 5HT seem to have a direct relation-
ship with neurogenesis, with increasing levels of 5HT associated
with enhanced neurogenesis, and decreased 5HT levels with
reduced neurogenesis (Brezun and Daszuta, 2000). The manner
in which these alterations might occur as a result of VEx is
quite interesting. VEx can elevate the levels of tryptophan
hydroxylase (the enzyme involved in the rate limiting step for
the synthesis of 5HT) in the raphe nucleus (Davis and Bailey,
1997; Lim et al., 2001; Min et al., 2003). Projections to the
hippocampus from the raphe nucleus, which is densely popu-
lated with serotonergic cells (Jacobs and Azmitia, 1992; Vertes
and Crane, 1997), can influence hippocampal activity (Nitz
and McNaughton, 1999; Viana Di Prisco et al., 2002). VEx
does not specifically increase the levels of 5HT in the hippo-
campus, although there was an increase in tryptophan (Chaoul-
off et al., 1989), which is an obligatory molecule for 5HT syn-
thesis. Although there was not a specific increase in 5HT fol-
lowing exercise, the altered expression of tryptophan creates an
atmosphere in which 5HT might be more readily synthesized
because of higher levels of this precursor. This therefore raises
the possibility that exercise-induced alterations to the serotoner-
gic system might augment neurogenesis.

Few studies have been conducted on the manner in which
EE alters the expression of 5HT, although EE has been shown
to increase the expression of a specific serotonin receptors in
the hippocampus (Rasmuson et al., 1998). It has also recently
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been found that serotonin depletion in the hippocampus does
not affect the survival of new neurons in the hippocampus fol-
lowing EE, but that the initial number of newborn cells created
is decreased (Ueda et al., 2005). These studies therefore suggest
that 5HT in the hippocampus is more instrumental in cell pro-
liferation than in cell survival, and as the 5HT system is
affected by exercise, this might account for the differences in
proliferation and survival observed between VEx and EE. How-
ever, the role of 5HT in both VEx and EE still needs to be
explored more exhaustively before its role in the process of neu-
rogenesis can be better defined.

INTRACELLULAR PATHWAYS

It is interesting to consider that only exercise increases cell
proliferation in the hippocampus but both VEx and EE increase
cell survival (van Praag et al., 1999b), despite the observation
that both behavioral manipulations increase the expression of
certain neurotrophic factors such as BDNF and NGF. Perhaps
exercise induces cell proliferation due to the actions of IGF-1
and FGF-2, the expression of which is not altered following EE.
Aberg et al. (2003) found increases in the total number of new
cells, thymidine incorporation, and number of cells that were
entering mitosis in response to the application of IGF-1 to adult
rat hippocampal stem/progenitor cells; exposure to both IGF-1
and FGF-2 induced maximal cell proliferation (Aberg et al.,
2003). Additionally, peripheral infusion of IGF-1 selectively
induced cellular proliferation of progenitor cells in the hippo-
campus (Aberg et al., 2000). Therefore, exercise-induced increases
in the expression of IGF-1 and FGF-2 might account for the
increased cell proliferation not seen with EE.

In terms of cell survival, both VEx and EE may activate the
intracellular pathways that were thought to play a role in cell
survival. BDNF, IGF-1, and NGF activate the IP3 and MAPK
pathways (Culmsee et al., 2002; Aberg et al., 2003; Zheng and
Quirion, 2004), and the former pathway appears to be essential
for cell survival (Zheng and Quirion, 2004). A common down-
stream effector of the IP3 pathways is a serine-threonine kinase,
AkT, which has been shown to be activated by exercise (Chen
and Russo-Neustadt, 2005) and is instrumental in BDNF and
IGF-1-induced cell survival (Zheng and Quirion, 2004).
Therefore, both VEx and EE might augment the activity of
AkT to promote cell survival through increases in BDNF and
NGF via EE, and BDNF, IGF-1, and NGF via VEx. Addition-
ally, both behavioral manipulations increase the expression of
BDNF and the immunoreactivity of CREB (Shen et al., 2001;
Williams et al., 2001), which has been shown to augment neu-
rogenesis in the hippocampus (Nakagawa et al., 2002).

In summary, certain trophic factors regulated by VEx (IGF-1
and FGF-2) might be more instrumental in the induction of
cell proliferation, especially because blocking IGF-1 disrupts
exercise-induced neurogenesis (Trejo et al., 2001). On the other
hand, enhanced neurogenesis following VEx and EE might
result from the activation of intracellular pathways thought to
play a role in cell survival.

CONCLUSIONS AND FUTURE DIRECTIONS

The initial evidence is that EE and VEx can increase neuro-
genesis in two distinctly different methods (van Praag et al.,
1999a). VEx increases cellular proliferation, and thus more cells
are created that can become neurons. In contrast, EE produces
an increase in neurogenesis without altering cell proliferation.
Both VEx and EE increase the expression of similar trophic
factors, produce alterations in dendritic structure, utilize similar
intracellular signaling pathways, and improve learning and
memory on hippocampal-dependent tasks. It is therefore sur-
prising that VEx and EE have such distinct effects on neuro-
genesis. However, vascular changes, such as increased blood
flow and enhanced BBB permeability, might more readily
deliver trophic factors that are specifically increased following
VEx (e.g., FGF-2 and IGF-1) and that are more instrumental
in stimulating cell proliferation. This might account for some
of the differences in neurogenesis following VEx and EE. How-
ever, the electrical activity induced by VEx and EE might also
account for the differences in neurogenesis, which needs to be
further elucidated, especially because LTP is enhanced by VEx
and reversed by EE.

One important goal of research on adult mammalian neuro-
genesis is to understand the underlying mechanisms and, even-
tually, use this knowledge to induce proliferation or sustain cell
survival in regions in need of new neurons in various human
neurological and psychiatric diseases (Gage, 2002). The indica-
tions are that VEx and EE differentially affect cellular prolifera-
tion and cell survival via dissociable pathways.
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