Hypocretin (also known as orexin) is a peptide neuromodulator that is expressed exclusively in the lateral hypothalamic area and plays a fundamental role in wakefulness and arousal. Chronic stress and compulsive drug-seeking are two examples of dysregulated states of hyperarousal that are influenced by hypocretin transmission throughout hypothalamic, extended amygdala, brainstem, and mesolimbic pathways. Here, we review current advances in the understanding of hypocretin’s modulatory actions underlying conditions of negative and positive emotional valence, focusing particularly on mechanisms that facilitate adaptive (and maladaptive) responses to stressful or rewarding environmental stimuli. We conclude by discussing progress toward integrated theories for hypocretin modulation of divergent behavioral domains.

Addresses
Department of Psychiatry and Behavioral Sciences, Stanford University, 1201 Welch Road, P154, Stanford, CA 94305, USA

Corresponding author: de Lecea, Luis (llecea@stanford.edu)

Introduction
The hypocretins (also known as orexins) are two secreted neuropeptides (Hcrt1, Hcrt2) derived from the same preprohypocretin gene that bind to two G-protein-coupled receptors (HcrtR1, HcrtR2) [1–3]. Both hypocretins are expressed exclusively in the lateral hypothalamic area (LH), therefore both are referred to here as hypocretin (Hcrt). LH-Hcrt neurons are inactive during sleep, but become activated during wakefulness, likely to promote goal-oriented behavior and energy homeostasis [4,5]. Direct manipulations of LH-Hcrt neurons using in vivo optogenetics revealed their key role in increasing the probability of sleep-to-wake transitions through HcrtR signaling in norepinephrine (NE) neurons of the locus coeruleus (LC) [6,7**]. While LH-Hcrt neurons project widely [8], this review covers Hcrt’s modulatory actions within the paraventricular nucleus of the hypothalamus (PVN), bed nucleus of the stria terminalis (BNST), central and basolateral nuclei of the amygdala (CeA, BLA), LC, ventral tegmental area (VTA), and nucleus accumbens (NAcc). Rather than providing a comprehensive summary of the literature, we focus on articles published in the last three years that examine Hcrt neuromodulation of stress-related and addiction-related phenomena.

Multiple lines of evidence identify Hcrt as a pro-stress modulator, adding complexity to the prevailing view of Hcrt as a reward-related signal. For example, intracerebroventricular (i.c.v.) Hcrt administration enhances anxiety-like behavior [9] and decreases brain reward function, reflected by increased thresholds in the classical intracranial self-stimulation (ICSS) procedure [10]. Interestingly, Hcrt’s effects on the ICSS threshold are mediated by corticotropin-releasing factor (CRF), the prototypical stress neuropeptide [11*]. CRF released from the PVN activates the hypothalamic–pituitary–adrenal (HPA) stress axis, resulting in increased levels of adrenocorticotropin hormone (ACTH) and corticosterone (or cortisol; CORT). Hcrt administered i.c.v. also elevates ACTH and CORT levels [12], supporting the hypothesis that Hcrt possesses CRF-dependent anti-reward properties [11*]. Yet, an extensive literature describes Hcrt-mediated positive modulation of the mesolimbic VTA dopamine (DA) reward system. Hcrt robustly innervates the VTA [13], induces excitatory synaptic plasticity in VTA-DA neurons [14,15], and causes DA release in VTA target regions [16,17]. Reward-seeking behavior (i.e., expression of conditioned place preference, operant self-administration, or reinstatement of either) is associated with activation of Hcrt neurons, and largely attenuated by systemic HcrtR blockade [18,19].

Thus, Hcrt is anatomically and functionally poised to modulate neural activity in arousal-related conditions of both negative and positive emotional valence. In reviewing the most recent findings on this topic, we discuss several mechanisms by which dysfunction of Hcrt modulation could underlie behavioral states associated with stress-related and addiction-related psychiatric disorders.

Hypocretin interactions with CRF stress pathways
Hcrt-containing efferents of the LH target the hypothalamus and extended amygdala, particularly the CRF-enriched nuclei of the PVN, BNST, and CeA [20–22]. I.c.v. infusion of Hcrt activates PVN-CRF neurons [23]
and elevates HPA hormones [12], suggesting that Hert directly modulates the CRF-mediated neuroendocrine output. Furthermore, the anxiolytic effects of HertR1 blockade are associated with reduced neural activation in the BNST and CeA [24]. Together with the CRF-dependent effects of Hert on the ICSS threshold described above, these data suggest that Hert interactions with CRF neurons of the PVN, BNST, and/or CeA are associated with anxiogenic and anhedonic states [11**]. Importantly, Hert-CRF interactions are reciprocal, as CRF provides excitatory input to Hert neurons, and Hert neurons undergo CRF-dependent transcriptional activation following exposure to various stresses [25].

Acute withdrawal following chronic drug exposure encompasses a stress-like state of hyperarousal, and withdrawal from morphine and nicotine increases transcriptional activity in Hert neurons of the LH, as well as CRF neurons of the PVN and CeA [26,27]. Morphine withdrawal-induced activation of the PVN, BNST, and CeA is decreased by systemic HertR1 blockade [27], and local HertR1 antagonism in the PVN reduces the behavioral expression of nicotine withdrawal [28]. These findings raise the possibility that Hert modulation of CRF neurons participates in the chronically relapsing, negative affective state that characterizes drug addiction. Indeed, one landmark study found that i.c.v. Hert mimicked the ability of stress to reinstate operant cocaine-seeking in a CRF-dependent manner [10]. Nevertheless, it remains unclear whether this form of Hert modulation involves CRF neurons in the PVN, BNST, or CeA.

Hypocretin modulation in the BNST and amygdala

As with the PVN, the BNST connects reciprocally with Hert neurons [8,29]. However, while PVN-CRF neurons are mostly glutamatergic, BNST-CRF neurons are primarily GABAergic [30], thereby offering diverse mechanisms for Hert modulation of stress circuits. In one recent study, slice application of Hert to neurons in the CRF-enriched dorsolateral BNST (dBNST) of adult mice depressed excitatory post-synaptic currents (EPSCs) in a HertR1-specific manner [31]. Interestingly, these effects on excitatory dBNST transmission mimicked those of yohimbine, the alpha-2 NE receptor antagonist known to reinstate operant alcohol-seeking through a HertR1-mediated mechanism [32]. In a separate study, slice application of Hert depolarized a subset of neurons in the posterior BNST of adult rats [35]. These effects contrast with those observed in mice [31], but are consistent with the ability of intra-BNST Hert to increase anxiety-like behavior via NMDA receptor activation [33]. Even a single subregion of the BNST can display tremendous cellular heterogeneity [30], and Hert’s modulatory actions undoubtedly vary across cell types, highlighting the need for detailed studies of Hert’s effects in genetically defined or physiologically defined BNST neurons.

Intra-CeA Hert infusion elevates anxiety levels [34], and Hert slice application excites ‘low-threshold burst’ output neurons in the medial division of the CeA [35]. Together with evidence that i.c.v. Hert activates CeA-CRF neurons [23], these data suggest a mechanism in which Hert potentiation of CeA excitability underlies a stress-like state (perhaps by releasing output neurons from inhibitory GABAergic control [34]). Elsewhere in the amygdala, Arendt et al. used RNA interference in adult mice to show that BLA-HertR2 signaling is anxiolytic rather than anxiogenic [36**]. Although this finding contrasts with the reported effects of intra-CeA Hert, it bears resemblance to a recent study that uncovered opposite consequences of HertR1 and HertR2 deletion on depressive-like behaviors in mice [37].

Hypocretin modulation in the LC

LC-NE neurons are a major target of Hert neurons, and combinatorial optogenetics revealed the necessity of LC-NE activity for Hert-mediated awakenings [7**]. Additionally, LC-NE neurons play a critical role in the stress response [38], NE-induced plasticity at GABAergic synapses in the PVN regulates HPA-axis activity [39], and the relevance of BNST-NE signaling to stress and reward function has been reviewed [40]. In one recent study of Hert-NE interactions, Sears et al. used optogenetic and pharmacological approaches to demonstrate that excitatory LC-HertR1 signaling accentuates the strength of fear memories through downstream NE signaling in the lateral amygdala [41]. Thus, disturbances in Hert modulation of brainstem NE nuclei may underlie conditions of dysregulated threat assessment via indirect potentiation of amygdala activity.

Hypocretin modulation in the VTA

VTA-DA neuron burst firing is sufficient to produce conditioned reward [42], and Hert neurons project strongly to the VTA [13], forming appositional contacts with DA neurons [43]. VTA-DA neurons demonstrate increased EPSC amplitudes and firing rates upon Hert application, and display HertR1-dependent excitatory synaptic plasticity following cocaine exposure. The precise mechanisms underlying these forms of modulation have been reviewed elsewhere in detail [14,15]. Intra-VTA infusion of Hert increases DA efflux in the pre-frontal cortex and NAcc, suggesting that Hert modulation of the VTA promotes appetitive responding and motivation for salient environmental cues via enhanced DA receptor signaling [16,17]. An expansive literature describes the contributions of Hert neurons and HertR signaling to reward-related behavior [18,19]. Here, we simply highlight a few recent examples that add to the growing understanding of how Hert modulation of
the VTA fits within the context of brain reward function and drug-seeking behavior.

Srinivasan et al. found that intra-VTA HcrtR antagonism reduced lever-pressing for 20% alcohol, and replicated previous findings by demonstrating that Hcrt increased the firing rate of putative VTA-DA neurons, indicating that Hcrt promotes alcohol-seeking by increasing VTA-DA excitability [44]. Mahler et al. reported the necessity of simultaneous Hcrt and glutamate transmission within the VTA for cue-induced reinstatement of operant cocaine-seeking [45], and Morgan et al. established that prenatal nicotine exposure enhances Hcrt innervation of VTA-DA neurons, hinting at a developmental role for Hcrt in drug-induced mesolimbic plasticity [43].

Hypocretin modulation in the NAcc

In addition to modulating DA activity at the level of the VTA, two new studies examine how Hcrt inputs to the NAcc could further amplify reward-related effects associated with striatal DA release. Mori et al. described a subpopulation of neurons in the NAcc shell that displayed a synergistic increase in firing rate upon combinatorial application of Hcrt and DA, relative to Hcrt alone [46]. Patyal et al. used voltammetry in NAcc shell slices to reveal a glutamate-dependent mechanism in which Hcrt enhanced DA levels following phasic, but not tonic, patterns of electrical stimulation [47]. Together with data implicating NAcc-HcrtR signaling in stress-induced reinstatement of morphine conditioned place preference [48] and cue-induced reinstatement of nicotine-seeking [49], these findings identify the NAcc (particularly the shell) as an additional site through which Hcrt could promote reward-based behavior via augmentation of DA release from VTA terminals.

Conclusions

Recent studies on Hcrt modulation have identified diverse mechanisms that point toward both pro-stress (PVN, BNST, CeA, LC) and anti-stress/pro-reward (BLA, VTA, NAcc) behavioral consequences (Figure 1). Future investigation of the discussed pathways may shed light on clinical findings that highlight Hcrt’s involvement in the response to both negative and positive motivational situations. For example, Hcrt-deficient patients display impaired amygdala activation following exposure to conditioned aversive stimuli, yet human amygdala Hcrt levels are elevated during laughter and affiliative social interactions [50*,51]. Below, we discuss potential explanations for the complex and occasionally bi-directional effects of Hcrt neuromodulation on emotional behavior.

Previous efforts to integrate the disparate behavioral profiles of Hcrt resulted in a ‘divergent efferent hypothesis,’ based on the apparent stress-responsiveness vs. reward-responsiveness of Hcrt neurons in the dorsomedial and perifornical hypothalamic nuclei vs. the lateral division of the LH. Specifically, Harris and Aston-Jones suggested that a stress-reward dichotomy could be explained by the differential strength of Hcrt projections from these two subpopulations to the LC vs. the VTA [52]. However, Gonzalez et al. performed a rigorous analysis of the anatomical locations of LC-projecting and VTA-projecting Hcrt neurons and failed to find a pattern consistent with that proposed by the divergent efferent hypothesis [53]. Nevertheless, the LH is a particularly heterogeneous structure, and functional segregation of Hcrt neuron subpopulations using viral-assisted circuit mapping is theoretically feasible with optical and chemical genetic tools.

An alternative theory is that the stress response, drug reward, and seeking behavior are all linked to increased Hcrt tone simply because these states are associated with enhanced levels of arousal. Yet, the concept of Hcrt as a pan-arousal modulator remains controversial. Rather, some have suggested that Hcrt acts specifically in response to environmental challenges to facilitate transitions between contrasting behavioral states [1], or even...
that Hcrt displays selectivity for precise emotional domains such as excitement and anger, rather than wakefulness per se [50**].

A further parsimonious explanation is that Hcrt peptides (Hcrt1 and Hcrt2) produce behavioral specificity via their differential actions at Hcrt receptors (HcrtR1 and HcrtR2), which are expressed in varying ratios across diverse cell types [1]. Apparent differences in the effects of Hcrt1 vs. Hcrt2 on VTA-DA neurons have been documented [15,44], and emerging data provide an intriguing basis for the hypothesis that HcrtR1 and HcrtR2 signaling oppositely modulate anxiety-like and depressive-like behaviors [36,37]. Such a theory also predicts that varying magnitudes of Hcrt release could initiate divergent behaviors in a concentration-dependent manner, based on the relative affinities of Hcrt peptides for their receptors.

Finally, Hcrt modulation of behavior is unlikely a static phenomenon, and may be particularly sensitive to experimental effects. For example, region-specific modulation of neural circuits by Hcrt could promote appetitive vs. aversive responding depending on an individual’s prior experience with stress or addictive substances. The observation that repeated stress flips the hedonic valence of intra-NAcce CRF treatment [54] highlights the powerful potential of environmental factors to interact with biological systems that are capable of divergent behavioral responses. The application of these ideas to the study of Hcrt could be especially valuable, given the remarkably broad range of Hcrt’s anatomical projections and modulatory outcomes described herein.

In summary, continued study of Hcrt modulation of stress and reward pathways (particularly Hcrt interactions with CRF, DA, and NE systems) may provide critical insight into the relationship between HcrtR signaling and behaviors relevant to psychiatric disease symptoms. Differential effects of Hcrt on plasticity of glutamatergic (PVN, BLA, VTA) and GABAergic (BNST, CeA, VTA) circuitry will be especially important in understanding persistent Hcrt-induced adaptations related to stress and reward function. Recent methodological advances now allow detailed interrogation of precise neural subpopulations, and we anticipate significant progress toward understanding the complex and diverse roles of Hcrt modulation with future application of these tools.

Conflict of interest statement
Nothing declared.

Acknowledgements

We thank Drs. Ada D. Eban-Rothschild and Andrew J. Whittle for helpful comments on this manuscript. Grant support from the National Institutes of Health was provided to WJG (F32 A002832) and LDL (R01 MH83702, R01 MH87592).

References and recommended reading

Papers of particular interest, published within the period of review, have been highlighted as:

- of special interest
- of outstanding interest

11. Hata T, Chen J, Ebihara K, Date Y, Ishida Y, Nakahara D: Intraventricular hemodynamic changes and activation of the corticotropin-releasing factor system in rats. Eur J Neurosci 2011, 34:816-826. These experiments provide a key replication of early data showing that i.c.v. Hcrt infusion increases the ICSS threshold, and expand these findings to demonstrate that this action of Hcrt can be mediated specifically through the VTA, and in a CRF receptor-dependent manner.
13. Viktor MM, Berridge CW: Hypocretin/orexin selectively increases dopamine efflux within the prefrontal cortex.

30. Dabrowska J, Hazra R, Guo JD, Devitt S, Rainnie DG: Central CRF neurons are not created equal: phenotypic differences in CRF-containing neurons of the rat paraventricular hypothalamus and the bed nucleus of the stria terminalis. Front Neurosci 2013, 7:156.

36. Arendt DH, Hassell J, Li H, Achua JK, Guarnieri DJ, Dileone RJ, Ronan PJ, Summers CH: Anxiolytic function of the orexin 2/ hypocretin A receptor in the basolateral amygdala. Psychoneuroendocrinology 2014, 40:17-26. These authors selectively downregulated levels of either HcrtR1 or HcrtR2 within the BLA, providing the first evidence that BLA-HcrtR2 signaling is in fact anxiolytic, rather than anxiogenic.

42. These authors optogenetically stimulated Hcrt terminals in the LC to show that fear memories could be strengthened by excitatory Hcrt modulation of LC activity and subsequent downstream amygdala NE release.

By quantifying brain region-specific peptide levels in human patients in vivo, this article describes the relationship between Hcrt and specific behavioral states, highlighting elevations in Hcrt during positive emotions and social interactions.

By assessing the impact of repeated forced swim on CRF-induced place conditioning, these authors illustrate the ability of stress to switch the hedonic valence of intra-NAcc CRF treatment from appetitive to aversive.