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ABSTRACT: This chapter aims to address two questions relating to the
role of the prefrontal cortex (PFC) in reward-guided choice behavior.
First, do PFC neurons encode rewards per se, or are they encoding
behavioral sequelae of reward? To address this, we recorded simultane-
ously from multiple PFC subregions, with the rationale that neuronal
selectivity that directly encoded the reward outcome should occur before
selectivity that reflected reward-related sequelae. Our results indicate
that neurons in the orbitofrontal cortex (OFC) encode reward informa-
tion before neurons in the dorsolateral PFC (DLPFC). Furthermore,
whereas DLPFC neurons encoded both the upcoming response as well
as the expected reward, OFC neurons encoded the reward alone. Our
interpretation of these results is that the OFC encodes the reward and
passes this information to the DLPFC, which uses it to determine the
behavioral response. The second question is whether the encoding is spe-
cific to the reward outcome or reflective of a more abstract value signal
that could facilitate decision making. We examined this by determining
whether the PFC encodes other types of information relevant to decision
making, such as probability of success and effort. We found that many
PFC neurons encoded at least one of these variables, but neurons in the
OFC and the medial PFC (MPFC) encoded combinations of the variables
indicative of encoding an abstract value signal. This signal could pro-
vide decision making with flexibility and a capacity to deal with novelty,
which are two of the hallmark features of prefrontal function. Future
research will focus on delineating the differential contributions of the
OFC and the MPFC to decision making.
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INTRODUCTION

Making a bad choice can be serious. For example, the beta monkey that
attacks the alpha male has to weigh the risk of injury or death against the
biological need to procreate. How does the brain make such decisions? How
does it ensure that it consistently selects the action most likely to realize the
needs of the organism and to enhance the organism’s survival prospects? The
orbitofrontal cortex (OFC) is a key region in this regard, since damage to this
area produces a relatively specific deficit in choice behavior. For example,
consider the case of Elliott, a happily married young man in his 30s.1,2 Elliott
excelled in college and rose rapidly through the ranks of a home-building firm
to become its chief accountant at the age of 32. Then, when Elliott was 35,
doctors diagnosed him with a brain tumor. The operation to remove the tumor
was successful, but the surgery left Elliot with bilateral damage to his OFC
and the ventral portion of his medial prefrontal cortex (MPFC). However,
neuropsychological tests of intelligence, memory, and language detected no
evidence of brain damage. Even tests designed specifically to tax frontal lobe
processes, such as working memory and rule switching, failed to reveal any
deficits. Despite this, Elliot’s life quickly spiraled out of control as he made a
series of disastrous life decisions. He quit his job, lost a large sum of money
to a scam artist, divorced his wife, lost contact with family and friends, and
remarried a prostitute he had known for a month. His second marriage ended
in divorce 6 months later, and he moved in with his parents. Thus, there is
a paradox with the OFC: damage to this area leaves many of our cognitive
abilities intact, yet it devastates our ability to make everyday decisions. In this
chapter, we will focus on the underlying neuronal mechanisms that might help
explain this paradox.

OFC NEURONS ENCODE EXPECTED REWARDS

The first neurophysiological studies of the OFC noted the frequency of
neurons that showed responses to the delivery of juice rewards.3,4 Subsequent
studies showed that the neurons showed differential activity to two visual stim-
uli. One stimulus predicted the delivery of fruit juice, and the other predicted
the delivery of saline.4 Such neurons were not simply encoding the visual
properties of the stimulus; when the reward contingencies were reversed, the
neuronal selectivity also would reverse. Thus, the neurons appeared to be en-
coding the reward predicted by the stimulus and expected by the monkey. It
was clear that these neuronal properties might be useful for decision making:
encoding what reward to expect from a given action would allow the motor
system to choose consistently the action that would lead to the largest reward.

However, the results of later studies countered the notion that these prop-
erties were unique to the OFC. For example, a series of studies demonstrated
that neurons showing differential activity dependent on the expected reward
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were also in the dorsolateral prefrontal cortex (DLPFC).5–11 Particularly chal-
lenging was a study by Roesch and Olson, which examined the influence of
expected reward magnitude on neurons throughout the frontal lobe.12 Neurons
showing a difference in firing rate depending on whether the subject expected
a large or small reward were more prevalent in motor areas, such as the pre-
motor cortex, than they were in the PFC. Similar neurons were also present in
the posterior cortex, including the perirhinal cortex,13 the parietal cortex,14–16

and even the primary visual cortex.17 We must be careful in interpreting these
results, however. A neuron is not necessarily encoding a reward just because
its firing rate correlates with some parameters of that reward. This is because
many behavioral and cognitive measures also correlate with expected reward.
For example, an animal’s muscles often tense when it expects a large reward,
and its behavior is quicker and more accurate.12 An animal also pays more
attention to cues that predict reward18 and enters a state of higher autonomic
arousal. Any of these processes may be driving neuronal firing rates.

How, then, do we determine whether OFC neurons are encoding the expected
reward value or one of the correlates of reward? Our approach has been to
compare the latency at which neurons encode expected rewards across various
brain regions. Our rationale is that we must first determine that an animal
expects a large reward before it can activate other cognitive processes, such as
increased attention, arousal, and motor readiness. Thus, neurons that encode
the expected reward will show differential activity dependent on the reward
before neurons that encode cognitive processes that correlate with expected
reward. In our first experiment, we recorded simultaneously from the DLPFC
and the OFC to examine whether we could use this rationale to specify more
precisely the contribution that both areas make to reward processing.

EXPERIMENT 1: COMPARISON OF REWARD ENCODING
IN THE DLPFC AND THE OFC

In our first experiment we trained two monkeys to choose between different
pictures associated with delivery of different amounts of fruit juice.19 The
subject would fixate on a central point on the screen, and two pictures would
sequentially appear (one on the left and one on the right) separated by a delay
(FIG. 1). The subject would then select one of the pictures by making a saccade
to the location where that picture had appeared. Each picture was associated
with the delivery of a specific amount of juice (0, 2, 4, or 8 drops). We used
new pictures each day, and subjects learned by trial and error to maximize
their reward by selecting pictures associated with larger juice amounts. Once
subjects were consistently selecting the pictures associated with the largest
reward (that is, they selected the largest reward on 27 out of the last 30 trials),
we reversed the picture–reward contingencies. Thus, the picture that previously
was associated with 8 drops of juice now was associated with 0 drops of juice,
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FIGURE 1. Illustration of the behavioral task that we used in Experiment 1.

the picture that previously was associated with 4 drops of juice now was
associated with 2 drops of juice, and so on. This ensured that when a picture
appeared on the screen, we could determine whether a neuron was encoding
the reward that the picture predicted or was encoding the visual properties of
the picture. For our present discussion, the most important neuronal activity
was the one that occurred once the second picture appeared. At this point, the
subject could predict what reward he would receive, as well as what motor
response he would need to make in order to receive that reward.

We recorded neuronal activity simultaneously from multiple electrodes im-
planted in the DLPFC and the OFC. Recording simultaneously (as opposed to
sequentially) from the two areas has the advantage that we are measuring the
areas’ neuronal activity during the exact same behavior, thereby controlling
for subtle changes in behavior such as practice effects across recording ses-
sions. We recorded the activity of 167 DLPFC neurons and 134 OFC neurons.
FIGURE 2 illustrates two examples of OFC neurons that encoded the expected
reward. FIGURE 2A and B show an example of an OFC neuron that encoded
whether the subject expected to receive 4 drops of juice. The graphs show
a higher firing rate on these trials compared to those in which the subject
expected to receive either 2 or 8 drops. Its firing rate, however, was the same
irrespective of whether the monkey made a left (FIG. 2A) or a right saccade
(FIG. 2B). FIGURE 2C and D show an example an OFC neuron that encoded the
expected reward in a parametric fashion. It showed a depression in its firing
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FIGURE 2. Spike density histograms from two OFC neurons indicating how the neu-
ronal firing rate changed according to the expected payoff and the monkey’s response (a left
or right saccade). Inset bar graphs indicate the mean firing rate (± standard error) during
the presentation of the reward-predictive cue (the first 500 ms). Black indicates that the cue
predicted the delivery of 8 drops of juice, dark gray 4 drops, and light gray 2 drops. (A, B)
OFC neuron showing a higher firing rate on trials in which the monkey expects to receive 4
drops of juice. (C, D) OFC neuron encoding the predicted reward in a parametric fashion.
It showed a depression in its firing rate that was greatest for 8 drops of juice, less for 4
drops, and least for 2 drops. The upcoming saccade did not affect the firing rate of either
neuron.

rate that was greatest for 8 drops of juice, less for 4 drops, and least for 2
drops. Again, the pattern of activity was independent of the direction of the
saccade.

In contrast, DLPFC neurons tended to show complex responses that re-
lated to both the expected reward and the direction of the upcoming saccade.
FIGURE 3 illustrates two representative DLPFC neurons. During the picture
epoch, the neuron in FIGURE 3A and B discriminated between the different ex-
pected reward amounts when the monkey made a rightward saccade; it showed
a high firing rate when 8 drops of juice was expected. (In contrast, during the
subsequent delay period, the same neuron was reward-selective only when the
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FIGURE 3. Spike density histograms from two DLPFC neurons, illustrated in the same
manner as FIGURE 2. (A, B) During the time period that the picture was on the screen, the
neuron discriminated between the different expected reward amounts, but only when the
monkey made a rightward saccade. (C, D) The neuron encoded the reward in a parametric
fashion, increasing its firing rate as the amount of expected reward increased. However, this
effect was much greater when the subject was about to make a leftward saccade as opposed
to a rightward saccade.

monkey made a leftward saccade.) The activity of the neuron in FIGURE 3C
and D also was affected by both the upcoming saccade and the amount of juice
that the subject expected. In this case, the neuron encoded the reward in a
parametric fashion, increasing its firing rate as the amount of expected reward
increased. However, this effect was much greater when the subject was about
to make a leftward saccade as opposed to a rightward saccade.

These single neurons were representative of the properties of OFC and
DLPFC neurons. To determine the proportion of these different types of neu-
rons across the population, we performed a two-way ANOVA on the neuron’s
mean firing rate during the presentation of the second picture, using the
factors of Reward (2, 4, or 8 drops of juice) and Saccade (leftward or right-
ward) (FIG. 4). In the OFC, 28% of the neurons showed a significant main
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FIGURE 4. Bar chart illustrating the prevalence of neurons that encoded the expected
payoff alone, the upcoming saccade alone, or an interaction between the payoff and the
saccade. For every neuron that we recorded, we determined what it was encoding by
performing a two-way ANOVA on the neuron’s mean firing rate during the period that the
picture was on the screen assessed at P < 0.05 (we saw similar results for the subsequent
delay epoch). OFC neurons tended to encode the reward alone, while neurons in DLPFC
encoded a combination of the reward and the upcoming saccade. Very few neurons in either
area encoded the saccade alone.

effect of Reward (assessed at P < 0.05) with no main effect or interaction with
Saccade, in comparison to 13% of DLPFC neurons (� 2 = 9.8, P < 0.005). In
contrast, 43% of DLPFC neurons showed a significant Reward–Saccade in-
teraction, compared to 19% of OFC neurons (� 2 = 19, P < 0.00005). Neurons
in both areas encoded reward in a variety of ways. Some showed a parametric
increase in firing rate as the expected reward size increased (27%). Others
showed a parametric decrease (15%). Yet others encoded a specific reward
(59%). These proportions were similar for both the OFC and the DLPFC.

A sliding receiver operating characteristic (ROC) analysis of the time-course
of the selectivity revealed further differences in the encoding of reward between
the two areas. Starting from 500 ms prior to the presentation of the second pic-
ture, we calculated an ROC value for a 200-ms time window. We then stepped
this window forward in 10-ms increments until we had analyzed the rest of
the trial. Briefly, the ROC analysis measured the degree of overlap between
two response distributions. For each neuron, we defined the expected reward
amount that yielded the highest firing rate as the preferred reward amount,
and the expected reward amount that elicited the lowest mean firing rate as the
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non-preferred reward amount. For trials in which the subject expected either
the preferred or the non-preferred reward amount, we determined the total
number of spikes that occurred in the 200-ms time window. This yielded two
distributions of neuronal activity for trials in which the monkey expected either
the preferred (P) or the non-preferred (N) reward. We then generated an ROC
curve by taking each observed neuronal firing rate and plotting the proportion
of P that exceeded the value of that observation against the proportion of N
that exceeded the value of that observation. The area under this curve was then
calculated. A value of 0.5 would indicate that the two distributions completely
overlapped (since for each value of the neuron’s firing rate the proportions of
P and N exceeding that value are equal), and as such the neuron would not
be selective. A value of 1.0, on the other hand, would indicate that the two
distributions are completely separate (that is, every value drawn from N is
exceeded by the entire distribution of P). In somewhat simpler terms, it is the
probability that if I told you the firing rate of the neuron, you could predict
which volume of juice the monkey expected to receive.

We used this analysis to compute the latency at which selectivity appeared.
We defined this latency as the point at which the ROC curve exceeded 0.6.
We chose the criterion as one that yielded a close approximation to the time at
which we judged selectivity to appear from the spike density histograms. This
measure did not differ between the two areas: 36% (60/167) of the DLPFC
neurons reached criterion in a mean time of 467 ms, while 39% (52/134) of
the OFC neurons reached criterion in a mean time of 426 ms (t-test = 1.0,
d.f. = 110, P > 0.1). However, while selectivity for the reward tended to ap-
pear at about the same time in both areas, it then rose more rapidly and peaked
earlier in the OFC than in the DLPFC (FIG. 5A). Therefore, for neurons that
reached criterion, we calculated the value and time of the peak ROC value
between the onset of the second picture and the start of the behavioral re-
sponse. There was no difference between the two areas in the mean peak ROC
value (DLPFC = 0.654, OFC = 0.646, t-test = 0.89, d.f. = 110, P > 0.1), but
the peak was reached significantly earlier in the OFC than in the DLPFC. FIG-
URE 5B shows a distribution of the times at which each neuron reached its peak
ROC value for the upcoming reward. On average, this occurred about 80 ms
earlier in the OFC (510 ms after the onset of picture 2) than in the DLPFC
(592 ms after the onset of picture 2; t-test = 2.1, d.f. = 110, P < 0.05).

In conclusion, we found neurons sensitive to the expected reward in both
the DLPFC and the OFC. However, there was evidence for functional spe-
cialization. OFC neurons only encoded the expected reward, whereas DLPFC
neurons encoded the upcoming saccade in addition to the expected reward.
Further, OFC neurons encoded reward information 80 ms earlier than neurons
in the DLPFC. The OFC is heavily and reciprocally connected with gustatory
and olfactory cortices,20,21 as well as the basolateral amygdala that might pro-
vide the OFC with information as to the value of the reward.22,23 Thus, the
OFC is conceivably the first prefrontal region that would receive information
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FIGURE 5. (A) Time-course of selectivity for the expected payoff (amount of reward)
across the DLPFC (gray) and OFC (black) population of neurons. The thick line indicates
the mean selectivity of the neurons, while the error bars indicate the standard error of the
mean. Both populations began to encode the expected payoff at about the same time, but
selectivity reached its peak value in the OFC before the DLPFC. The measure of selectivity
is derived from the ROC of each neuron’s firing rate. The ROC is the probability that an
independent observer could correctly identify the payoff given the firing rate of the neuron.
No selectivity equates to an ROC value of 0.5. (In practice it is slightly higher than this
because we rectify the ROC value during its calculation. Small fluctuations due to noise
push the value to about 0.52). Maximal selectivity equates to a value of 1.0. (B) Distribution
of peak selectivity across the population of DLPFC and OFC neurons. The OFC population
reached its peak selectivity approximately 80 ms before the DLPFC population (Wilcoxon’s
rank-sum test, P < 0.05).

about the value of the forthcoming juice reward. Our observation that reward
value information peaks sooner in the OFC than in the DLPFC is consistent
with that notion. In contrast, the timing of reward information in the DLPFC,
along with these neurons’ tendency to encode the upcoming response, suggest
that this area may be where information about reward value converges with
information about the subject’s actions, thus allowing the subject to choose
between the two different reward amounts. Thus, our hypothesis is that infor-
mation about expected rewards enters the PFC through the OFC and then is
relayed to the DLPFC. If this hypothesis is true, inactivation of the DLPFC
should not affect reward information in the OFC, whereas inactivation of the
OFC should attenuate reward information in the DLPFC. Future experiments
will test this hypothesis.

EXPERIMENT 2: ENCODING OF OTHER IMPORTANT
DECISION PARAMETERS

Thus far, we have seen that OFC neurons show differential activity de-
pending upon the reward that the subject expects for a given choice. We have
also seen that the timing of this activity is more consistent with the OFC
neuronal response reflecting the encoding of the reward, rather than reflecting
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a cognitive process that merely correlates with the reward. We have suggested
that this neuronal response would make an important contribution to decision
making by indicating to the motor system the action that would lead to the
larger reward. However, decision making is more complex than simply always
choosing the maximal reward. For example, a large reward may be obtainable,
but if it is difficult to obtain it may be better to aim for a smaller, more readily
obtainable reward.

Evolutionary biologists and economists have constructed detailed models
of how we integrate different parameters to make effective decisions. These
models emphasize the consideration of three basic parameters: the expected
reward or payoff, the cost in terms of time and energy, and the probabil-
ity of success.24–26 Determining the value of a choice involves calculating
the difference between the payoff and the cost and multiplying this by the
probability of success. An obvious question, therefore, is to what extent OFC
neurons also encode these other decision parameters. Do OFC neurons per-
form the calculations that are necessary for making an ideal choice, and is this
their critical contribution to decision making? Recent results from neuroimag-
ing studies suggest that this might be the case. The OFC (and sometimes the
MPFC) is activated by manipulations of various decision variables—including
probability,27–29 payoff,30–32 or the combination of these two variables—
to create a set of integrated expected values.33–37 These observations have
led to the hypothesis that the OFC might integrate all variables relevant to
making a decision to derive an abstract value signal, the so-called neuronal
currency.38

A recent study in our own laboratory directly tested whether neurons in any
of the major PFC regions were capable of responding to multiple parameters
that underlie decisions. We trained monkeys to choose between pictures while
we simultaneously recorded from the OFC, the MPFC, and the lateral PFC
(LPFC).39 Each picture was associated with a specific outcome. Some pictures
were associated with a fixed amount of juice, but only on a certain proportion of
trials (probability manipulation). Other pictures were associated with varying
amounts of juice (payoff manipulation). Finally, some pictures were associated
with a fixed amount of juice, but the subject had to earn the juice by pressing
a lever a number of times (effort manipulation). About one-third of the PFC
neurons responded parametrically to manipulations of just one of the decision
parameters. These neurons occurred with equal prevalence in the three PFC
areas from which we recorded. Furthermore, some neurons responded to a
combination of two or more parameters. There was a progressive increase in
the proportion of these neurons from the LPFC (16%) to the OFC (27%) to
the MPFC (48%). Given these results, it is not surprising that the most severe
decision-making deficits in humans occur after combined damage to the OFC
and the MPFC.

We speculate that an important function of the OFC and the MPFC is
to combine the multiple variables necessary to make a decision in order to
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derive an abstract value signal. This simplifies the task of the motor system,
which at any given instant should select the action with the highest value.
This encoding scheme offers distinct computational advantages. When faced
with two choices, A and B, one might imagine it would be simpler to compare
them directly rather than going through an additional step of assigning them
an abstract value. The problem with this is that as the number of available
choices increases, the number of direct comparisons increases exponentially.
Thus, choosing among A, B, and C would require three comparisons (AB,
AC, and BC), while choosing among A, B, C, and D requires six comparisons
(AB, AC, AD, BC, BD, and CD). The solution quickly suffers from combi-
natorial explosion as the number of choices increases. In contrast, valuing
each choice along a common reference scale provides a linear solution to the
problem.

An abstract representation provides important additional behavioral advan-
tages, such as flexibility and a capacity to deal with novelty, both of which are
hallmarks of prefrontal function. For example, suppose an animal encounters
a new food type. In order to determine whether it is worth choosing relative
to other potential food sources, the animal must determine the value of that
food. If the animal relies on making direct comparisons, it can only determine
the new food’s relative worth by iteratively comparing it with all previously
encountered foods. On the other hand, if the animal calculates an abstract
value, it has to perform only a single calculation. By assigning the new food
a value on the common reference scale, the animal knows the value of this
foodstuff relative to all other foods. Second, it is often unclear how to com-
pare directly very different outcomes. How does a monkey decide between
grooming a conspecific and eating a banana? Valuing the alternatives along a
common reference scale can help. For example, although I have never needed
to value my car in terms of bananas, I can readily do so because I can assign
the bananas and the car an abstract, monetary value.

Recent neuropsychological studies of decision making in patients with OFC
and MPFC damage are consistent with this interpretation of our findings.
Patients show unusual patterns of decision making when faced with complex
choices that require the consideration and integration of multiple attributes.40

For example, in choosing among different apartments, the patient might need
to consider each apartment’s size, neighborhood, and noise level. Some of these
considerations might involve a trade-off between disparate variables, such as
a large apartment in a so-so neighborhood or a small apartment in a good
neighborhood, and thus would benefit from valuation along an abstract scale.
Behavioral data suggested that controls attempted to make the choice that
maximized as many of the attributes as possible, whereas patients followed a
somewhat simpler strategy of assessing each apartment against some standard
of acceptability, a strategy termed satisficing.

It is not just complex decisions that are impaired, however. Patients with
OFC and MPFC damage also show erratic performance on a task that requires
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preference judgments between stimuli presented two at a time, such as pictures
of food, famous people, or even just colored swatches. Unlike controls, the
patients showed erratic choices. For example, if they preferred A over B and
B over C, they did not necessarily prefer A over C.41 Thus, simple preference
judgments also seem to benefit from the signals provided by the OFC and the
MPFC.

CONCLUSION

Damage to the OFC produces a unique deficit. It impairs everyday decision
making while leaving other cognitive capabilities intact. An extensive litera-
ture implicates the OFC in processing reward information, but in interpreting
the area’s neuronal responses, we must be careful to differentiate between re-
sponses that directly relate to the encoding of the reward’s value and responses
that only indirectly relate to the reward, via their encoding of cognitive and
behavioral processes that covary with reward. Our findings from the first ex-
periment suggest that the OFC is indeed encoding the reward’s value, given
the short latency of the neuronal reward-related responses. In contrast, the
DLPFC appears to encode reward information as it relates to the guidance of
behavioral responses. In addition, PFC neurons appear to encode other factors
relevant to a decision, such as the effort required to obtain the reward and
the probability of the reward’s occurrence. Furthermore, we suggest that PFC
neurons, particularly those in the OFC and the MPFC, are responsible for
integrating the different decision variables to derive an abstract value signal.
In turn, this signal would facilitate our capacity to make flexible and effective
decisions in novel situations. Future research will aim to determine the precise
contributions that the OFC and the MPFC make to decision making.

ACKNOWLEDGMENTS

Grants from NIDA R01-DA019028 and the Hellman Family Faculty Fund
support our work. I would like to thank Earl Miller, in whose laboratory much
of the work for the first experiment was completed. I would also like to thank
Steven Kennerley for valuable conversations that went into the development
of many of the ideas in this manuscript.

REFERENCES

1. ESLINGER, P.J. & A.R. DAMASIO. 1985. Severe disturbance of higher cognition after
bilateral frontal lobe ablation: patient EVR. Neurology 35: 1731–1741.

2. DAMASIO, A.R. 1994. Descartes’ Error: Emotion, Reason, and the Human Brain.
Putman. New York.



WALLIS 459

3. ROSENKILDE, C.E., R.H. BAUER & J.M. FUSTER. 1981. Single cell activity in ventral
prefrontal cortex of behaving monkeys. Brain Res. 209: 375–394.

4. THORPE, S.J., E.T. ROLLS & S. MADDISON. 1983. The orbitofrontal cortex: neuronal
activity in the behaving monkey. Exp. Brain Res. 49: 93–115.

5. HIKOSAKA, K. & M. WATANABE. 2000. Delay activity of orbital and lateral pre-
frontal neurons of the monkey varying with different rewards. Cereb. Cortex 10:
263–271.

6. AMEMORI, K. & T. SAWAGUCHI. 2006. Contrasting effects of reward expectation on
sensory and motor memories in primate prefrontal neurons. Cereb. Cortex 16:
1002–1015.

7. KOBAYASHI, S. et al. 2002. Influence of reward expectation on visuospatial pro-
cessing in macaque lateral prefrontal cortex. J. Neurophysiol. 87: 1488–1498.

8. LEON, M.I. & M.N. SHADLEN. 1999. Effect of expected reward magnitude on the
response of neurons in the dorsolateral prefrontal cortex of the macaque. Neuron
24: 415–425.

9. WATANABE, M. 1990. Prefrontal unit activity during associative learning in the
monkey. Exp. Brain Res. 80: 296–309.

10. WATANABE, M. 1992. Frontal units of the monkey coding the associative signifi-
cance of visual and auditory stimuli. Exp. Brain Res. 89: 233–247.

11. WATANABE, M. 1996. Reward expectancy in primate prefrontal neurons. Nature
382: 629–632.

12. ROESCH, M.R. & C.R. OLSON. 2003. Impact of expected reward on neuronal
activity in prefrontal cortex, frontal and supplementary eye fields and premotor
cortex. J. Neurophysiol. 90: 1766–1789.

13. LIU, Z. & B.J. RICHMOND. 2000. Response differences in monkey TE and perirhinal
cortex: stimulus association related to reward schedules. J. Neurophysiol. 83:
1677–1692.

14. PLATT, M.L. & P.W. GLIMCHER. 1999. Neural correlates of decision variables in
parietal cortex. Nature 400: 233–238.

15. MUSALLAM, S. et al. 2004. Cognitive control signals for neural prosthetics. Science
305: 258–262.

16. SUGRUE, L.P., G.S. CORRADO & W.T. NEWSOME. 2004. Matching behavior and the
representation of value in the parietal cortex. Science. 304: 1782–1787.

17. SHULER, M.G. & M.F. BEAR. 2006. Reward timing in the primary visual cortex.
Science 311: 1606–1609.

18. MAUNSELL, J.H. 2004. Neuronal representations of cognitive state: reward or at-
tention? Trends Cogn. Sci. 8: 261–265.

19. WALLIS, J.D. & E.K. MILLER. 2003. Neuronal activity in primate dorsolateral and
orbital prefrontal cortex during performance of a reward preference task. Eur. J.
Neurosci. 18: 2069–2081.

20. MORECRAFT, R.J., C. GEULA & M.M. MESULAM. 1992. Cytoarchitecture and neural
afferents of orbitofrontal cortex in the brain of the monkey. J. Comp. Neurol.
323: 341–358.

21. CARMICHAEL, S.T. & J.L. PRICE. 1995. Sensory and premotor connections of the
orbital and medial prefrontal cortex of macaque monkeys. J. Comp. Neurol. 363:
642–664.

22. BAXTER, M.G. & E.A. MURRAY. 2002. The amygdala and reward. Nat. Rev. Neu-
rosci. 3: 563–573.

23. CARDINAL, R.N. et al. 2002. Emotion and motivation: the role of the amygdala,
ventral striatum, and prefrontal cortex. Neurosci. Biobehav. Rev. 26: 321–352.



460 ANNALS OF THE NEW YORK ACADEMY OF SCIENCES

24. KAHNEMAN, D. & A. TVERSKY. 2000. Choices, Values and Frames. Cambridge
University Press. New York.

25. LOEWENSTEIN, G. & J. ELSTER. 1992. Choice Over Time. Russel Sage Foundation.
New York.

26. STEPHENS, D.W. & J.R. KREBS. 1986. Foraging Theory. Princeton University Press.
Princeton.

27. ABLER, B. et al. 2006. Prediction error as a linear function of reward probability
is coded in human nucleus accumbens. Neuroimage 31: 790–795.

28. CRITCHLEY, H.D., C.J. MATHIAS & R.J. DOLAN. 2001. Neural activity in the human
brain relating to uncertainty and arousal during anticipation. Neuron 29: 537–
545.

29. HUETTEL, S.A. et al. 2006. Neural signatures of economic preferences for risk and
ambiguity. Neuron. 49: 765–775.

30. BREITER, H.C. et al. 2001. Functional imaging of neural responses to expectancy
and experience of monetary gains and losses. Neuron 30: 619–639.

31. ELLIOTT, R. et al. 2003. Differential response patterns in the striatum and or-
bitofrontal cortex to financial reward in humans: a parametric functional mag-
netic resonance imaging study. J. Neurosci. 23: 303–307.

32. KNUTSON, B. et al. 2001. Anticipation of increasing monetary reward selectively
recruits nucleus accumbens. J. Neurosci. 21: RC159.

33. YACUBIAN, J. et al. 2006. Dissociable systems for gain- and loss-related value
predictions and errors of prediction in the human brain. J. Neurosci. 26: 9530–
9537.

34. TOBLER, P. N. et al. 2007. Reward value coding distinct from risk attitude-related
uncertainty coding in human reward systems. J. Neurophysiol. 97: 1621–1632.

35. O’DOHERTY, J. et al. 2001. Abstract reward and punishment representations in the
human orbitofrontal cortex. Nat Neurosci. 4: 95–102.

36. KNUTSON, B. et al. 2005. Distributed neural representation of expected value. J
Neurosci. 25: 4806–4812.

37. DREHER, J.C., P. KOHN & K.F. BERMAN. 2006. Neural coding of distinct statistical
properties of reward information in humans. Cereb. Cortex. 16: 561–573.

38. MONTAGUE, P.R. & G.S. BERNS. 2002. Neural economics and the biological sub-
strates of valuation. Neuron 36: 265–284.

39. KENNERLEY, S.W., A.H. LARA & J.D. WALLIS. 2005. Prefrontal neurons encode an
abstract representation of value. Society For Neuroscience. 194.16.

40. FELLOWS, L.K. 2006. Deciding how to decide: ventromedial frontal lobe damage
affects information acquisition in multi-attribute decision making. Brain. 129:
944–952.

41. FELLOWS, L.K. & M.J. FARAH. 2007. The role of ventromedial prefrontal cortex in
decision making: judgment under uncertainty or judgment per se? Cereb. Cortex.
17: 2669–2674.


