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ABSTRACT The role of Wnt signaling in the formation of neural circuits has been
well established. Here, I wish to propose a Wnt signaling cascade at the mature
central synapse. The synaptic Wnt signaling may have important implications in
regulation of brain functions. Synapse 61:866–868, 2007. VVC 2007 Wiley-Liss, Inc.

Wnts are secreted signaling proteins that orches-
trate many aspects of early developmental processes,
including specification of cell fate, regulation of cell
adhesion, and migration and control of cell prolifera-
tion (Logan and Nusse, 2004; Moon et al., 2004).
Aberrant Wnt signaling is the etiological cause for a
variety of human disease (Logan and Nusse, 2004;
Moon et al., 2004). Wnts are expressed in regions of
adult brains (Fear et al., 2000; Gavin et al., 1990;
Katoh, 2002; Kirikoshi and Katoh, 2002; Kirikoshi
et al., 2001; Maretto et al., 2003; Roelink et al., 1990;
Shimogori et al., 2004), but the role of Wnt signaling
in the brain is unclear. The function of Wnt signaling
during synapse formation has been nicely reviewed
(Ciani and Salinas, 2005; Packard et al., 2003). The
author wishes to propose a hypothesis that describes
the novel role of Wnt signaling at the mature central
synapse. This role of Wnt signaling may implicate in
the regulation of cognitive functions of the brain.

The hypothesis is that Wnts signal at mature syn-
apses in an activity-dependent manner and that the
activity-dependent synaptic Wnt signaling regulates
the structural and functional plasticity of the synapse
(Fig. 1). The postulated synaptic Wnt signaling is
supported by several lines of evidence.

First, many key proteins in the Wnt signaling path-
way, including Wnts, Frizzled receptors, and down-
stream effectors, are localized at central synapses.
For instance, we recently found that Wnt3A and
Frizzled-4 are at the hippocampal synapse (Chen
et al., 2006). A number of Frizzled proteins interact
with PSD-95, a postsynaptic scaffold protein (Hering
and Sheng, 2002), indicating the localization of Wnt
receptors on the postsynaptic membrane. b-catenin,
GSK-3b, axin, and adenomatous polyposis coli, which
are critical for the canonical Wnt signaling (Behrens
and Kuhl, 2003; Logan and Nusse, 2004; Moon et al.,
2004), are at synaptic regions (Hirabayashi et al.,
2004; Hooper et al., 2007; Takeichi and Abe, 2005;
Temburni et al., 2004). In addition, a number of im-

portant proteins in the Wnt/Ca2þ signaling pathway
such as CaMKII, PKC, and calcineurin are also local-
ized at central synapses (Lisman et al., 2002; Ram-
akers et al., 1997; Xia and Storm, 2005). Therefore,
the central synapse is equipped with the molecular
machinery that transduces Wnt signals.

Second, the release of Wnt ligands from synapses is
controlled by synaptic activity. We demonstrated that
tetanic stimulation causes rapid synaptic release of
Wnt3A in hippocampal slices. Importantly, this teta-
nus-induced Wnt3A release from hippocampal synap-
ses depends on the activation of NMDA receptors,
because it was abolished by APV (Chen et al., 2006).
Thus, Wnt3A is most likely released from postsynap-
tic compartments.

Third, synaptic activity activates Wnt signaling in
postsynaptic neurons. Wnt signals stabilize b-catenin,
which then accumulates in the nucleus to activate the
transcription of Wnt target genes (Logan and Nusse,
2004). We observed that synaptic activity elicited by
tetanic stimulation led to NMDA receptor- and Wnt-
dependent increase of nuclear b-catenin and upre-
gulation of Wnt target genes in the postsynaptic
neurons (Chen et al., 2006).

The evidence outlined above suggest the following
scenario of Wnt signaling at central synapses: Synap-
tic activity leads to the release of Wnt ligands from
the synapses, and released Wnts bind to Frizzled
receptors on synaptic membranes to activate Wnt sig-
naling that regulates synaptic structures, functions,
and gene expression (Fig. 1).

The synaptic Wnt signaling hypothesis states that
the activation of Wnt signaling at synapses modulates
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synaptic plasticity. This statement is based on two
facts. One is that many essential Wnt signaling pro-
teins that are enriched at synaptic regions and regu-
lated by synaptic activity play important roles in
synaptic plasticity; these proteins include b-catenin,
GSK-3b, CaMKII, PKC, calcineurin, and Rho
GTPases (Abe and Takeichi, 2007; Belmeguenai and
Hansel, 2005; Hooper et al., 2007; Lisman et al.,
2002; O’Kane et al., 2004; Peineau et al., 2007; Ram-
akers et al., 1997; Takeichi and Abe, 2005; Xia and
Storm, 2005). The other fact is that manipulation of
Wnt signaling in hippocampal slices affects long-term
potentiation (LTP) (Chen et al., 2006).

It is conceivable that synaptic Wnt signaling may
contribute to the regulation of synaptic plasticity via

both local and cell-wide mechanisms (Fig. 1). At a
local level, the activation of the Wnt signaling may
cause synaptic remodeling, because b-catenin, a key
effector protein in the Wnt signaling, form complex
with cadherins to regulate synaptic structure (Take-
ichi and Abe, 2005). In addition, CaMKII, an impor-
tant protein in the Wnt/Ca2þ signaling pathway, is
known to play a critical role in structural changes of
the synapse during synaptic plasticity (Jourdain
et al., 2003; Matsuzaki et al., 2004; Pratt et al.,
2003). Previous studies revealed molecular mecha-
nisms by which Wnt signaling controls synapse for-
mation (Ciani and Salinas, 2005; Hall et al., 2000;
Krylova et al., 2002; Packard et al., 2002), activity-
regulated synaptic Wnt signaling may use similar
mechanisms to modulate synaptic remodeling during
plasticity. Another anticipated vein for the Wnt sig-
naling activation to modulate synaptic plasticity is by
altering synaptic transmission. For example, the reg-
ulation of CaMKII and calcineurin by synaptic Wnt/
Ca2þ signaling may directly affect the activity of syn-
aptic receptors that are important for synaptic trans-
mission (Lisman et al., 2002; Xia and Storm, 2005).
In addition, Wnts and b-catenin have been reported to
regulate neurotransmitter release (Ahmad-Annuar
et al., 2006; Bamji et al., 2003), although the role of b-
catenin in this aspect was suggested to be Wnt signal-
ing-independent (Bamji et al., 2003). As a cell-wide
mechanism, the synaptic Wnt signaling may contribute
to synaptic plasticity by regulating gene expression.
Consistent with this idea, LTP induction by tetanic
stimulation is accompanied by nuclear accumulation of
b-catenin and activation of Wnt targets genes (Chen
et al., 2006). Interestingly, recent work in C. elegans
indicated that the expression of a glutamate receptor is
regulated by Wnt signaling (Dreier et al., 2005).

The involvement of the synaptic Wnt signaling in
synaptic plasticity as I postulate here immediately
suggests a cellular mechanism by which this signaling
regulates the cognitive functions of the brain (e.g.
learning and memory). Indeed, mutations of a Dro-
sophila Wnt receptor cause memory deficits (Dura
et al., 1993, 1995). Importantly, specific mental disor-
ders, such as Alzheimer’s disease and schizophrenia,
are proposed to be associated with abnormal Wnt sig-
naling (Alimohamad et al., 2005; Caricasole et al.,
2004; Cotter et al., 1998; De Ferrari et al., 2003; Fuen-
tealba et al., 2004; Miyaoka et al., 1999). Therefore,
the synaptic Wnt signaling is likely an important mo-
lecular pathway that regulates brain functions.
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